Math Vector Library Machine Learning Extension
Reference Manual (C/C++)
DD-00004-010

Jan Adelsbach
January 26, 2024

CONTENTS

CONTENTS

Contents

1 About this Guide
1.1 Legal Information
1.2 Feedback and Contact
1.3 Introduction
1.4 Audience for This Guide
1.5 How to Use This Guide
1.6 Conventions Used in This Guide

2 Overview

2.1 Introduction
2.2 Thread Safety
2.3 SIMD/SPMD Unit Usage
2.4 Performance Characteristics

3 Utility

3.1 mvecmlver - Version query
3.1.1 Parameters

4 Activation functions
4.1 vmlsigm - Sigmoid activation
4.1.1 Parameters

4.2 vmlsigmd - Sigmoid activation (first derivative)
4.2.1 Parameters

4.3 vmlrelu - ReLU activation
4.3.1 Parameters

4.4 vmlrelud - ReLU activation (first derivative)
4.4.1 Parameters

4.5 vmltanh - Tanh activation
4.5.1 Parameters

4.6 vmltanhd - Tanh activation (first derivative)
4.6.1 Parameters

4.7 vmlsplu - Softplus activation
4.7.1 Parameters

4.8 vmlsplud - Softplus activation (first derivative)
4.8.1 Parameters

4.9 vmlgauss - Gaussian activation
4.9.1 Parameters

4.10 vmlgaussd - Gaussian activation (first derivative)
4.10.1 Parameters
4.11 vmlgelu - GELU activation
4.11.1 Parameters
4.12 vmlgelud - GELU activation (first derivative)
4.12.1 Parameters
4.13 vmlsilu - SiLLU activation
4.13.1 Parameters
4.14 vmlsilud - SiLU activation (first derivative)
4.14.1 Parameters
4.15 vmlssgn - Softsign activation
4.15.1 Parameters
4.16 vmlssgnd - Softsign activation (first derivative)
4.16.1 Parameters
4.17 vmlmish - MISH activation
4.17.1 Parameters
4.18 vmlmishd - MISH activation (first derivative)
4.18.1 Parameters
4.19 vmlatan - Arctan activation
4.19.1 Parameters

Version 1.0, January 2024 - Public Release Version
Copyright © Adelsbach

CONTENTS CONTENTS

4.20 vmlatand - Arctan activation (first derivative) 26
4.20.1 Parameters e e e e e e 26

4.21 vmlprelu - PReLU activation e e 27
4.21.1 Parameters e e e e e e e e e e e e 27

4.22 vmlprelud - PReLU activation (first derivative) L 28
4.22.1 Parameters e e e e e e 28

4.23 vmlselu - SELU activation e e e e 29
4.23.1 Parameters e e e e e e e e e 29

4.24 vmlselud - SELU activation (first derivative) e 30
4.24.1 Parameters e e e e e e e e e e e 30

5 Acknowledgements 31
Version 1.0, January 2024 - Public Release Version 3

Copyright © Adelsbach

1 ABOUT THIS GUIDE

1 About this Guide

1.1 Legal Information

Copyright ©2024 Adelsbach UG (haftungsbeschrankt). All Rights Reserved.
Copyright ©2023-2024 Jan Adelsbach. All Rights Reserved.
From herein referred to as Adelsbach.

This document may not be reproduced without written persmission by Adelsbach.

1.2 Feedback and Contact

For feedback on this document, please use the following email address:
techpubs@adelsbach-research.eu

Please include the page number or a link to the page.

For general contact details, please visit https:/adelsbach-research.eu/contact.

1.3 Introduction

This manual describes the Application Programming Interface (API) of the Math Vector Library Machine Learning
Extension for the C and C++ programming language families.

1.4 Audience for This Guide

The audience of this guide is assumed to be C or C++ programmers who understand the basic concepts of at least one of
the aforementioned programming languages.
Familiarity with pointer based arrays in C/C++ is strongly recommended.

1.5 How to Use This Guide

This guide first describes some general programming details of the library and then documents each function individu-
ally.

The documentation for each function applies both the single and double precision versions. The former can be
differentiated by a suffix letter f.

1.6 Conventions Used in This Guide

x
Normal math typesetting represents a normal variable.

Bold math typesetting represents a vector.

Mono
Monospace typesetting represents C function names, variables or data types.

Version 1.0, January 2024 - Public Release Version 4
Copyright © Adelsbach

2 OVERVIEW

2 Overview

2.1 Introduction

The Math Vector Library Machine Learning Extension is an extension to the Math Vector Library which provides high-
performance function library with vectorized versions of standard mathematical functions. The Machine Learning ex-
tension builds upon the infrastructure of the Math Vector Library to provide performance tuned primitive functions for
machine learning applications.
The functions can operate both on dense and strided vectors, the latter can be supplied individually for result and
operand vectors. Stride only executes the function on every n-th element leaving the elements in between untouched.
This manual describes the Application Programming Interface (API) of the machine learning extension functions.

2.2 Thread Safety

All routines in the library are completely thread-safe, as long as the data supplied in arguments is exclusive to the
current thread.

2.3 SIMD/SPMD Unit Usage

This library makes excessive use of Single Instruction Multiple Data (SIMD) or Single program Multiple Data (SPMD)
style extensions of the respective processor platform. It thereby abides by the standard system calling conventions when
utilizing such.

2.4 Performance Characteristics

All subroutines in this library have a performance characteristic of O(n). The routines may have different execution
profiles depending upon the arguments supplied.

Version 1.0, January 2024 - Public Release Version 5
Copyright © Adelsbach

3 UTILITY

3 Utility
3.1 mvecmlver - Version query

#include <mvecml.h>

void mvecmlver (int *major, int *minor);

Queries the version of the library and stores the major and minor version numbers in the respective arguments.

3.1.1 Parameters

MAJOR - INTEGER EXIT: The major version number of the library.
MINOR - INTEGER EXIT: The minor version number of the library

Version 1.0, January 2024 - Public Release Version 6
Copyright © Adelsbach

4 ACTIVATION FUNCTIONS

4 Activation functions

4.1 vmlsigm - Sigmoid activation

#include <mvecml.h>

void vmlsigm (int n, double *y, int incy, const double *x, int incx);
void vmlsigmf(int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the Sigmoid activation function of the values in the
x vector and stores the result in the y vector.

L1
y= l+e®

4.1.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 7

Copyright © Adelsbach

4.2 vmlsigmd - Sigmoid activation (first derivative) 4 ACTIVATION FUNCTIONS

4.2 vmlsigmd - Sigmoid activation (first derivative)

#include <mvecml.h>

void vmlsigmd (int n, double *y, int incy, const double *x, int incx);
void vmlsigmdf (int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the first derivative of the Sigmoid activation
function of the values in the x vector and stores the result in the y vector.

L1 (1 1)
y= l+eX l+eX
4.2.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 8
Copyright © Adelsbach

4.3 vmlrelu - ReLU activation 4 ACTIVATION FUNCTIONS

4.3 vmlrelu - ReLLU activation

#include <mvecml.h>

void vmlrelu (int n, double *y, int incy, const double *x, int incx);
void vmlreluf (int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the ReLU activation function of the values in the x
vector and stores the result in the y vector.

. |0 wherex=<0
y:

x wherex>0

4.3.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n=1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 9
Copyright © Adelsbach

4.4 vmlrelud - ReLU activation (first derivative) 4 ACTIVATION FUNCTIONS

4.4 vmlrelud - ReLU activation (first derivative)

#include <mvecml.h>

void vmlrelud (int n, double *y, int incy, const double *x, int incx);
void vmlreludf (int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the first derivative of the ReLLU activation function
of the values in the x vector and stores the result in the y vector.

. {O where x<0vx=0
y:

1 wherex>0

The case where x = 0 is normally undefined, for proper behavior in the application scenario of machine learning this
function substitutes 0 as a result on those elements to handle this condition gracefully.

4.4.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 10
Copyright © Adelsbach

4.5 vmltanh - Tanh activation 4 ACTIVATION FUNCTIONS

4.5 vmltanh - Tanh activation

#include <mvecml.h>

void vmltanh (int n, double *y, int incy, const double *x, int incx);
void vmltanhf (int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the TanH activation function of the values in the x

vector and stores the result in the y vector.
L eX—e™®

y= eX+e™X

4.5.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 11
Copyright © Adelsbach

4.6 vmltanhd - Tanh activation (first derivative)

4 ACTIVATION FUNCTIONS

4.6 vmltanhd - Tanh activation (first derivative)

#include <mvecml.h>

void vmltanhd (int n, double *y, int incy, const double *x, int incx);
void vmltanhdf (int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the first derivative of the TanH activation function

of the values in the x vector and stores the result in the y vector.

4.6.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.

CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version
Copyright © Adelsbach

12

4.7 vmlsplu - Softplus activation 4 ACTIVATION FUNCTIONS

4.7 vmlsplu - Softplus activation

#include <mvecml.h>

void vmlsplu (int n, double *y, int incy, const double *x, int incx);
void vmlspluf(int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the Softplus activation function of the values in the
x vector and stores the result in the y vector.
y=In(1+e%)

4.7.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 13
Copyright © Adelsbach

4.8 vmlsplud - Softplus activation (first derivative) 4 ACTIVATION FUNCTIONS

4.8 vmlsplud - Softplus activation (first derivative)

#include <mvecml.h>

void vmlsplud (int n, double *y, int incy, const double *x, int incx);
void vmlspludf (int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the first derivative of the Softplus activation
function of the values in the x vector and stores the result in the y vector.

L1
y= l+e®

4.8.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n=1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 14

Copyright © Adelsbach

4.9 vmlgauss - Gaussian activation 4 ACTIVATION FUNCTIONS

4.9 vmlgauss - Gaussian activation

#include <mvecml.h>

void vmlgauss (int n, double *y, int incy, const double *x, int incx);
void vmlgaussf(int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the Gaussian activation function of the values in

the x vector and stores the result in the y vector.
-X

y=e

4.9.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 15
Copyright © Adelsbach

4.10 vmlgaussd - Gaussian activation (first derivative) 4 ACTIVATION FUNCTIONS

4.10 vmlgaussd - Gaussian activation (first derivative)
#include <mvecml.h>

void vmlgaussd (int n, double *y, int incy, const double *x, int incx);
void vmlgaussdf(int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the first derivative of the Gaussian activation
function of the values in the x vector and stores the result in the y vector.

x2

y =-2xe”

4.10.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 16
Copyright © Adelsbach

4.11 vmlgelu - GELU activation 4 ACTIVATION FUNCTIONS

4.11 vmlgelu - GELU activation

#include <mvecml.h>

void vmlgelu (int n, double *y, int incy, const double *x, int incx);
void vmlgeluf (int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the GELU activation function of the values in the
x vector and stores the result in the y vector.

y= %x(l+erf %))

4.11.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 17
Copyright © Adelsbach

4.12 vmlgelud - GELU activation (first derivative) 4 ACTIVATION FUNCTIONS

4.12 vmlgelud - GELU activation (first derivative)

#include <mvecml.h>

void vmlgelud (int n, double *y, int incy, const double *x, int incx);
void vmlgeludf (int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the first derivative of the GELU activation function
of the values in the x vector and stores the result in the y vector.

X -x2/2

y= %x(l +erf(%)) + \@ﬁe

4.12.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 18
Copyright © Adelsbach

4.183 vmlsilu - SiLU activation

4 ACTIVATION FUNCTIONS

4.13 vmlsilu - SiLU activation

#include <mvecml.h>

void vmlsilu (int n, double *y, int incy, const double *x, int incx);
void vmlsiluf(int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the SiLU activation function of the values in the x

vector and stores the result in the y vector.
x

y= l+eX

4.13.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version
Copyright © Adelsbach

19

4.14 vmlsilud - SiLU activation (first derivative)

4 ACTIVATION FUNCTIONS

4.14 vmlsilud - SiLLU activation (first derivative)

#include <mvecml.h>

void vmlsilud (int n, double *y, int incy, const double *x, int incx);
void vmlsiludf (int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the first derivative of the SiLLU activation function

of the values in the x vector and stores the result in the y vector.

Y T A rexp

4.14.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version
Copyright © Adelsbach

l+e *+xe*

20

4.15 vmlssgn - Softsign activation 4 ACTIVATION FUNCTIONS

4.15 vmlssgn - Softsign activation

#include <mvecml.h>

void vmlssgn (int n, double *y, int incy, const double *x, int incx);
void vmlssgnf(int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the Softsign activation function of the values in the

x vector and stores the result in the y vector.
b¢

Y= x[+1

4.15.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 21
Copyright © Adelsbach

4.16 vmlssgnd - Softsign activation (first derivative) 4 ACTIVATION FUNCTIONS

4.16 vmlssgnd - Softsign activation (first derivative)

#include <mvecml.h>

void vmlssgnd (int n, double *y, int incy, const double *x, int incx);
void vmlssgndf (int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the first derivative of the Softsign activation
function of the values in the x vector and stores the result in the y vector.

- x|
Y= &2+ Dixl+2x2

4.16.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 22
Copyright © Adelsbach

4.17 vmlmish - MISH activation 4 ACTIVATION FUNCTIONS

4.17 vmlmish - MISH activation
#include <mvecml.h>

void vmlmish (int n, double *y, int incy, const double *x, int incx);
void vmlmishf(int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the MISH activation function of the values in the
x vector and stores the result in the y vector.

y = tanh(log(e* + 1))x

4.17.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 23
Copyright © Adelsbach

4.18 vmlmishd - MISH activation (first derivative) 4 ACTIVATION FUNCTIONS

4.18 vmlmishd - MISH activation (first derivative)

#include <mvecml.h>

void vmlmishd (int n, double *y, int incy, const double *x, int incx);
void vmlmishdf (int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the first derivative of the MISH activation function
of the values in the x vector and stores the result in the y vector.

X 1 2
xe (cosh(log(ex+1)))
eX+1

y = tanh(log(e* + 1)) +

4.18.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n=1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 24
Copyright © Adelsbach

4.19 vmlatan - Arctan activation 4 ACTIVATION FUNCTIONS

4.19 vmlatan - Arctan activation

#include <mvecml.h>

void vmlatan (int n, double *y, int incy, const double *x, int incx);
void vmlatanf(int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the arc-tangent activation function of the values in
the x vector and stores the result in the y vector.
y = tan"!(x)

4.19.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n = 1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 25
Copyright © Adelsbach

4.20 vmlatand - Arctan activation (first derivative) 4 ACTIVATION FUNCTIONS

4.20 vmlatand - Arctan activation (first derivative)

#include <mvecml.h>

void vmlatand (int n, double *y, int incy, const double *x, int incx);
void vmlatandf (int n, float *y, int incy, const float *x, int incx);

Given an input vector x and a result vector y this function computes the first derivative of the arc-tangent activation
function of the values in the x vector and stores the result in the y vector.

4.20.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n=1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 26
Copyright © Adelsbach

4.21 vmlprelu - PReLU activation 4 ACTIVATION FUNCTIONS

4.21 vmlprelu - PReLU activation
#include <mvecml.h>

void vmlprelu (int n, double *y, int incy, double a, const double *x, int incx);
void vmlpreluf(int n, float *y, int incy, float a, const float *x, int incx);

Given an input vector x, a result vector y and a constant a this function computes the PReLU activation function of the
values in the x vector and stores the result in the y vector.

. Jax where x <0
y= X wherex=0

4.21.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n=1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

A - REAL ENTRY: Constant a.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 27
Copyright © Adelsbach

4.22 vmlprelud - PReLU activation (first derivative) 4 ACTIVATION FUNCTIONS

4.22 vmlprelud - PReLU activation (first derivative)
#include <mvecml.h>

void vmlprelud (int n, double *y, int incy, double a, const double *x, int incx);
void vmlpreludf(int n, float *y, int incy, float a, const float *x, int incx);

Given an input vector x, a result vector y and a constant a this function computes the first derivative of the PReLU
activation function of the values in the x vector and stores the result in the y vector.

.)a where x <0
y= 1 wherex=0

4.22.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.
CONSTRAINT: n=1.

Y - ARRAY OF REAL EXIT: Result vector y.
CONSTRAINT: Must contain n x incy elements.
CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

A - REAL ENTRY: Constant a.

X - ARRAY OF REAL ENTRY: Input vector x.
CONSTRAINT: Must contain n x incx elements.
CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version 28
Copyright © Adelsbach

4.23 vmlselu - SELU activation

4 ACTIVATION FUNCTIONS

4.23 vmlselu - SELU activation

#include <mvecml.h>

void vmlselu (int n, double *y, int incy, double 1, double a, const double *x, int incx);
void vmlseluf (int n, float *y, int incy, float 1, float a, const float *x, int incx);

Given an input vector x, a result vector y and constants A and « this function computes the SELU activation function

of the values in the x vector and stores the result in the y vector.

. a(e*—1) wherex<0
y=4
where x>0

X

4.23.1 Parameters

N - INTEGER ENTRY: Number of elements of x and y.

CONSTRAINT: n=1.
Y - ARRAY OF REAL EXIT: Result vector y.

CONSTRAINT: Must contain n x incy elements.

CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

L - REAL ENTRY: Constant A.
A - REAL ENTRY: Constant a.
X - ARRAY OF REAL ENTRY: Input vector x.

CONSTRAINT: Must contain n x incx elements.

CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version
Copyright © Adelsbach

29

4.24 vmlselud - SELU activation (first derivative)

4 ACTIVATION FUNCTIONS

4.24 vmlselud - SELU activation (first derivative)

#include <mvecml.h>

void vmlselud (int n, double *y, int incy, double 1, double a, const double *x, int incx);
void vmlseludf (int n, float *y, int incy, float 1, float a, const float *x, int incx);

Given an input vector x, a result vector y and constants A and a this function computes the first derivative of the SELU

activation function of the values in the x vector and stores the result in the y vector.
yﬁl{

N - INTEGER ENTRY: Number of elements of x and y.

4.24.1 Parameters

CONSTRAINT: n=1.
Y - ARRAY OF REAL EXIT: Result vector y.

CONSTRAINT: Must contain n x incy elements.

CONSTRAINT: Must not overlap with array x.

INCY - INTEGER ENTRY: Stride for the vector y.
CONSTRAINT: incy > 0.

L - REAL ENTRY: Constant A.
A - REAL ENTRY: Constant a.
X - ARRAY OF REAL ENTRY: Input vector x.

CONSTRAINT: Must contain n x incx elements.

CONSTRAINT: Must not overlap with array y.

INCX - INTEGER ENTRY: Stride for the vector x.
CONSTRAINT: incx > 0.

Version 1.0, January 2024 - Public Release Version
Copyright © Adelsbach

where x <0

where x>0

30

5 ACKNOWLEDGEMENTS

5 Acknowledgements

Parts of this product include or are derived from code under the following licences:

~
*

Copyright (c) 2003, Steven G. Kargl

Copyright (c) 2005, 2011 David Schultz <das@FreeBSD.0ORG>
Copyright (c) 2005 Bruce D. Evans and Steven G. Kargl
A1l rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ¢¢AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

¥R X K X KX X X K X X X X K X X X X X X X X ¥ X *

~
* *
~

Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

*
*
*
*
*
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
*
*
*
*
*
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 2005-2020 Rich Felker, et al.
Copyright © 2013 Szabolcs Nagy

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

Version 1.0, January 2024 - Public Release Version 31
Copyright © Adelsbach

5 ACKNOWLEDGEMENTS

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Version 1.0, January 2024 - Public Release Version 32
Copyright © Adelsbach

