
Adelsbach/VSIPL
Core Profile

Programming Reference Guide
DD-00016-015

Jan Adelsbach

February 7, 2026

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

2

Contents

0.1 About this Guide . 8
0.1.1 Legal Information . 8
0.1.2 Feedback and Contact . 8

0.2 Overview . 8
0.2.1 Introduction . 8
0.2.2 Link Libraries . 8

0.3 General Functions . 9
0.3.1 vsip_cstorage_p - Complex storage type . 10

1 Support Functions 11
1.1 Initialization Functions . 12

1.1.1 vsip_init - Initialize . 13
1.1.2 vsip_finalize - Finalize . 14

1.2 Block Support Functions . 15
1.2.1 vsip_d blockcreate_p - Create a block . 16
1.2.2 vsip_blockbind_p - Create a block using existing data . 18
1.2.3 vsip_cblockbind_p - Create a block using existing data (complex) . 20
1.2.4 vsip_blockrebind_p - Rebind existing block . 22
1.2.5 vsip_cblockrebind_p - Rebind existing block (complex) . 24
1.2.6 vsip_d blockadmit_p - Admit block data . 25
1.2.7 vsip_blockfind_p - Get user data . 26
1.2.8 vsip_cblockfind_p - Get user data (complex) . 27
1.2.9 vsip_blockrelease_p - Release a block . 28
1.2.10 vsip_cblockrelease_p - Release a block (complex) . 29
1.2.11 vsip_d blockdestroy_p - Destroy a block . 30

1.3 Vector View Support Functions . 31
1.3.1 vsip_d vcreate_p - Create a Vector View . 32
1.3.2 vsip_d vbind_p - Bind a Vector View to a Data Block . 33
1.3.3 vsip_d vcloneview_p - Clone a Vector View . 34
1.3.4 vsip_d vget_p - Get an Element from a Vector View . 35
1.3.5 vsip_d vput_p - Set an Element in a Vector View . 36
1.3.6 vsip_d vsubview_p - Create a Subview of a Vector View . 37
1.3.7 vsip_vrealview_p - Get the Real Part View of a Complex Vector View 38
1.3.8 vsip_vimagview_p - Get the Imaginary Part View of a Complex Vector View 39
1.3.9 vsip_d vgetattrib_p - Get the Attributes of a Vector View . 40
1.3.10 vsip_d vputattrib_p - Set the Attributes of a Vector View . 41
1.3.11 vsip_d vgetblock_p - Get the Data Block of a Vector View . 42
1.3.12 vsip_d vgetlength_p - Get the Length of a Vector View . 43
1.3.13 vsip_d vputlength_p - Set the Length of a Vector View . 44
1.3.14 vsip_d vgetstride_p - Get the Stride of a Vector View . 45
1.3.15 vsip_d vputstride_p - Set the Stride of a Vector View . 46
1.3.16 vsip_d vgetoffset_p - Get the Offset of a Vector View . 47
1.3.17 vsip_d vputoffset_p - Set the Offset of a Vector View . 48
1.3.18 vsip_d vdestroy_p - Destroy a Vector View . 49
1.3.19 vsip_d valldestroy_p - Destroy a Vector View and Its Data Block . 50

1.4 Matrix View Support Functions . 51
1.4.1 vsip_d mcreate_p - Create a Matrix View . 52

3

CONTENTS CONTENTS

1.4.2 vsip_d mbind_p - Bind a Matrix View to a Block . 54
1.4.3 vsip_d mcloneview_p - Clone a Matrix View . 55
1.4.4 vsip_d mget_p - Get Matrix Element . 56
1.4.5 vsip_d mput_p - Set Matrix Element . 57
1.4.6 vsip_d msubview_p - Create a Submatrix View . 58
1.4.7 vsip_d mtransview_p - Create a Transposed Matrix View . 59
1.4.8 vsip_d mrowview_p - Create a Row Vector View of a Matrix . 60
1.4.9 vsip_d mcolview_p - Create a Column Vector View of a Matrix . 61
1.4.10 vsip_d mdiagview_p - Create a Diagonal Vector View of a Matrix . 62
1.4.11 vsip_mrealview_p - Create a Real Part Matrix View . 64
1.4.12 vsip_mimagview_p - Create an Imaginary Part Matrix View . 65
1.4.13 vsip_d mgetattrib_p - Get Matrix Attributes . 66
1.4.14 vsip_d mputattrib_p - Set Matrix Attributes . 68
1.4.15 vsip_d mgetblock_p - Get the Data Block from a Matrix View . 70
1.4.16 vsip_d mgetcollength_p - Get Number of Columns in a Matrix View 71
1.4.17 vsip_d mputcollength_p - Set Number of Columns in a Matrix View 72
1.4.18 vsip_d mgetrowlength_p - Get Number of Rows in a Matrix View . 73
1.4.19 vsip_d mputrowlength_p - Set Number of Rows in a Matrix View . 74
1.4.20 vsip_d mgetcolstride_p - Get Column Stride of a Matrix View . 75
1.4.21 vsip_d mputcolstride_p - Set Column Stride of a Matrix View . 76
1.4.22 vsip_d mgetrowstride_p - Get Row Stride of a Matrix View . 77
1.4.23 vsip_d mputrowstride_p - Set Row Stride of a Matrix View . 78
1.4.24 vsip_d mgetoffset_p - Get Matrix View Offset . 79
1.4.25 vsip_d mputoffset_p - Set Matrix View Offset . 80
1.4.26 vsip_d mdestroy_p - Destroy a Matrix View . 81
1.4.27 vsip_d malldestroy_p - Destroy Matrix View and its Data Block . 82

2 Scalar Functions 83
2.1 Real Scalar Functions . 84
2.2 Complex Scalar Functions . 85

2.2.1 vsip_real_p - Complex Real part . 86
2.2.2 vsip_imag_p - Complex Imaginary part . 87
2.2.3 vsip_cmplx_p - Create complex number . 88
2.2.4 vsip_CMPLX_p - Create a Complex Scalar and Store in a Pointer . 89

2.3 Index Scalar Functions . 90

3 Random Number Generation 91
3.1 Random Number Functions . 92

3.1.1 vsip_randcreate - Create a Random Number Generator State . 93
3.1.2 vsip_randdestroy - Destroy a Random Number Generator State . 94
3.1.3 vsip_d vrandu_p - Generate Uniformly Distributed Random Numbers in a Vector View 95
3.1.4 vsip_d vrandn_p - Fill Vector with Normally Distributed Random Numbers 96

4 Vector and Elementwise Operations 97
4.1 Copy Functions . 98

4.1.1 vsip_d vcopy_p _p - Copy Vector Views . 99
4.1.2 vsip_d mcopy_p - Copy Matrix Views . 100

4.2 Vector General . 101
4.2.1 vsip_d vmul_p - Element-wise Multiplication of Two Vector Views . 102
4.2.2 vsip_vdiv_p - Element-wise Division of Two Vector Views . 103
4.2.3 vsip_d vadd_p - Element-wise Addition of Two Vector Views . 104
4.2.4 vsip_d vsub_p - Element-wise Subtraction of Two Vector Views . 105
4.2.5 vsip_d svmul_p - Multiply a Scalar by a Vector View . 106
4.2.6 vsip_svdiv_p - Divide a Scalar by a Vector View . 107
4.2.7 vsip_svadd_p - Add a Scalar to a Vector View . 108
4.2.8 vsip_d vneg_p - Negate Elements of a Vector View . 109
4.2.9 vsip_d vmag_p - Compute Magnitude of Elements of a Vector View . 110

4.3 Vector Real . 111
4.3.1 vsip_vminval_p - Find the Minimum Value in a Vector View . 112

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

4

CONTENTS CONTENTS

4.3.2 vsip_vmaxval_p - Find the Maximum Value in a Vector View . 113
4.3.3 vsip_vsumval_p - Compute the Sum of Elements in a Vector View . 114
4.3.4 vsip_vsumsqval_p - Compute the Sum of Squares of Elements in a Vector View 115
4.3.5 vsip_vsq_p - Square Elements of a Vector View . 116
4.3.6 vsip_vrecip_p - Compute Reciprocal of Elements of a Vector View . 117
4.3.7 vsip_vmin_p - Element-wise Minimum of Two Vector Views . 118
4.3.8 vsip_vmax_p - Element-wise Maximum of Two Vector Views . 119
4.3.9 vsip_vsin_p - Element-wise Sine of a Vector View . 120
4.3.10 vsip_vcos_p - Element-wise Cosine of a Vector View . 121
4.3.11 vsip_vtan_p - Element-wise Tangent of a Vector View . 122
4.3.12 vsip_vatan_p - Element-wise Arctangent of a Vector View . 123
4.3.13 vsip_vexp_p - Element-wise Exponential of a Vector View . 124
4.3.14 vsip_vlog_p - Element-wise Natural Logarithm of a Vector View . 125
4.3.15 vsip_vlog10_p - Element-wise Base-10 Logarithm of a Vector View 126
4.3.16 vsip_vsqrt_p - Element-wise Square Root of a Vector View . 127
4.3.17 vsip_vatan2_p - Element-wise Arctangent of Two Vector Views . 128
4.3.18 vsip_vfill_p - Fill a Vector View with a Scalar Value . 129
4.3.19 vsip_vramp_p - Fill a Vector View with a Ramp . 130

4.4 Vector Complex . 131
4.4.1 vsip_cvjmul_p - Element-wise Complex Conjugate Multiplication of Two Complex Vector Views . . 132
4.4.2 vsip_rcvmul_p - Element-wise Real-Complex Multiplication . 133
4.4.3 vsip_rscvmul_p - Element-wise Scalar-Complex Multiplication . 134
4.4.4 vsip_cvconj_p - Element-wise Complex Conjugate of a Complex Vector View 135
4.4.5 vsip_cvmag_p - Compute Magnitude of Complex Vector View . 136
4.4.6 vsip_vcmagsq_p - Element-wise Magnitude Squared of a Complex Vector View 137

4.5 Boolean . 138
4.5.1 vsip_vnot_p - Boolean Vector Logical NOT . 139
4.5.2 vsip_vand_p - Boolean Vector Logical AND . 140
4.5.3 vsip_vor_p - Boolean Vector Logical OR . 141
4.5.4 vsip_vxor_p - Boolean Vector Logical XOR . 142
4.5.5 vsip_valltrue_p - Check if All Elements in Boolean Vector are True 143
4.5.6 vsip_vanytrue_p - Check if Any Element in Boolean Vector is True 144
4.5.7 vsip_vindexbool - Find Indices of True Elements in Boolean Vector 145

4.6 Manipulation Operations . 146
4.6.1 vsip_vreal_p - Extract Real Part of a Complex Vector View . 147
4.6.2 vsip_vimag_p - Extract Imaginary Part of a Complex Vector View . 148
4.6.3 vsip_vcmplx_p - Create a Complex Vector View from Real and Imaginary Parts 149
4.6.4 vsip_d vgather_p - Gather Elements from a Vector . 150
4.6.5 vsip_d vscatter_p - Scatter Elements to a Vector . 152
4.6.6 vsip_d vswap_p - Swap Elements Between two Vectors . 154
4.6.7 vsip_vrect_p - Convert Cartesian Coordinates to Complex Numbers 156
4.6.8 vsip_vpolar_p - Convert Polar Coordinates to Cartesian . 158

5 Signal Processing Functions 161
5.1 FFT Functions . 162

5.1.1 vsip_dd fftop_create_p - Create FFT Objects (Out-of-Place) . 163
5.1.2 vsip_ccfftip_create_p - Create FFT Object (In-Place) . 165
5.1.3 vsip_fft_destroy_p - Destroy an FFT Object . 167
5.1.4 vsip_fft_getattr_p - Get FFT Object Attributes . 168
5.1.5 vsip_dd fftop_p - Perform FFT Operations (Out-of-Place) . 169
5.1.6 vsip_ccfftip_p - Perform FFT Operations (In-Place) . 170
5.1.7 vsip_dd ffmop_create_p - Create Multiple-FFT Objects (Out-of-Place) 171
5.1.8 vsip_ccffmip_create_p - Create Multilpe-FFT Object (In-Place) . 173
5.1.9 vsip_fftm_destroy_p - Destroy a Multiple-FFT Object . 174
5.1.10 vsip_fftm_getattr_p - Get Multple-FFT Object Attributes . 175
5.1.11 vsip_dd ffmop_p - Perform Multiple-FFT Operations (Out-of-Place) 176
5.1.12 vsip_ccffmip_p - Perform Multiple-FFT Operations (In-Place) . 177

5.2 Convolution and Correlation Functions . 178

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

5

CONTENTS CONTENTS

5.2.1 vsip_d conv1d_create_p - Create 1D Convolution Object . 179
5.2.2 vsip_d conv1d_destroy_p - Destroy 1D Convolution Object . 181
5.2.3 vsip_d conv1d_getattr_p - Get 1D Convolution Object Attributes . 182
5.2.4 vsip_d convolve1d_p - Perform 1D Convolution . 183
5.2.5 vsip_d corr1d_create_p - Create 1D Correlation Object . 184
5.2.6 vsip_d corr1d_destroy_p - Destroy 1D Correlation Object . 186
5.2.7 vsip_d corr1d_getattr_p - Get 1D Correlation Object Attributes . 187
5.2.8 vsip_d correlate1d_p - Compute 1D Correlation . 188

5.3 Window Functions . 190
5.3.1 vsip_vcreate_blackman_p - Create a Blackman Window Vector . 191
5.3.2 vsip_vcreate_kaiser_p - Create a Kaiser Window Vector . 193
5.3.3 vsip_vcreate_cheby_p - Create a Chebyshev Window Vector . 195
5.3.4 vsip_vcreate_hanning_p - Create a Hanning Window Vector . 197

5.4 FIR . 199
5.4.1 vsip_d fir_create_p - Create a FIR Filter . 200
5.4.2 vsip_d fir_reset_p - Reset a FIR Filter . 202
5.4.3 vsip_d fir_getattr_p - Get Attributes of a FIR Filter . 203
5.4.4 vsip_d firflt_p - Apply a FIR Filter to a Vector View . 204
5.4.5 vsip_d fir_destroy_p - Destroy a FIR Filter . 205

5.5 Miscellaneous Signal Processing Functions . 206
5.5.1 vsip_vhisto_p - Compute Histogram of a Vector View . 207

6 Linear Algebra Functions 209
6.1 Matrix and Vector Operations . 210

6.1.1 vsip_d vdot_p - Compute the Dot Product of Two Vector Views . 211
6.1.2 vsip_cvjdot_p - Compute the Conjugate Dot Product of Two Complex Vector Views 212
6.1.3 vsip_d vouter_p - Outer Product of Two Vectors . 213
6.1.4 vsip_d mtrans_p - Matrix Transposition . 215
6.1.5 vsip_cmherm_p - Matrix Hermitian . 217
6.1.6 vsip_d gemp_p - General Matrix Product . 218
6.1.7 vsip_d gems_p - General Matrix Scaling and Addition . 220
6.1.8 vsip_d vmprod_p - Vector-Matrix Product . 222
6.1.9 vsip_d mvprod_p - Matrix-Vector Product . 224
6.1.10 vsip_d mprod_p - Matrix-Matrix Product . 226
6.1.11 vsip_d mprodt_p - Matrix-Matrix Product with Transposition . 228
6.1.12 vsip_cmprodh_p - Complex Matrix Product with Hermitian Transpose 230
6.1.13 vsip_cmprodj_p - Complex Matrix Product with Conjugate . 232

6.2 Special Linear Solvers . 234
6.2.1 vsip_d toepsol_p - Solve a Toeplitz System of Equations . 235
6.2.2 vsip_d covsol_p - Solve a Covariance System of Equations . 236
6.2.3 vsip_d llsqsol_p - Solve Linear Least Squares Problem . 237

6.3 General Linear Square System Solver . 238
6.3.1 vsip_d lud_create_p - Create LU Decomposition Object . 239
6.3.2 vsip_d lud_destroy_p - Destroy LU Decomposition Object . 240
6.3.3 vsip_d lud_getattr_p - Get LU Decomposition Attributes . 241
6.3.4 vsip_d lud_p - Perform LU Decomposition . 242
6.3.5 vsip_d lusol_p - Solve Linear System Using LU Decomposition . 243

6.4 Symmetric Positive Definite Linear System Solver . 244
6.4.1 vsip_d chold_create_p - Create Cholesky Decomposition Object . 245
6.4.2 vsip_d chold_destroy_p - Destroy Cholesky Decomposition Object 246
6.4.3 vsip_d chold_getattr_p - Get Cholesky Decomposition Attributes 247
6.4.4 vsip_d chold_p - Perform Cholesky Decomposition . 248
6.4.5 vsip_d cholsol_p - Solve Linear Systems Using Cholesky Decomposition 249

6.5 Over-determined Linear System Solver . 250
6.5.1 vsip_d qrd_create_p - Create QR Decomposition Object . 251
6.5.2 vsip_d qrd_destroy_p - Destroy QR Decomposition Object . 253
6.5.3 vsip_d qrd_getattr_p - Get QR Decomposition Attributes . 254
6.5.4 vsip_d qrd_p - Perform QR Decomposition . 255

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

6

CONTENTS CONTENTS

6.5.5 vsip_d qrsol_p - Solve Linear Systems Using QR Decomposition . 256

6.5.6 vsip_d qrdsolr_p - Solve Linear Systems with Modified R Matrix . 257

6.5.7 vsip_d qrdprodq_p - Multiply by Q Matrix from QR Decomposition 258

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

7

0.1. ABOUT THIS GUIDE CONTENTS

0.1 About this Guide

0.1.1 Legal Information

Copyright ©2025-2026 Adelsbach UG (haftungsbeschränkt). All Rights Reserved.
Copyright ©2025-2026 Jan Adelsbach. All Rights Reserved.
From herein referred to as Adelsbach.

This document may not be reproduced without written permission by Adelsbach.

0.1.2 Feedback and Contact

For feedback on this document, please use the following email address:
techpubs@adelsbach-research.eu

Please include the page number or a link to the page.

For general contact details, please visit https://adelsbach-research.eu/contact.

0.2 Overview

0.2.1 Introduction

The Adelsbach/VSIPL is an implmenetation of the digital signal processing API standard of the Object Management
Group version VSIPL 1.5.

This reference manual provides a brief reference of all functionality provided in the Adelsbach/VSIPL library for the
Core profile. For a more throughfully and complete reference, please refer to the Object Management Group VSIPL 1.5
standard.

0.2.2 Link Libraries

The following libraries are provided with the distribution. For development it is recommended to link against the more
extensive error checking library, whereas for deployment use one of the performance tuned variants.

• libavsipl_c.a Performance tuned library without additional error checking. May make use of processor SIMD
features, please see platform details.

• libavsipl_c_mp.a Performance tuned library with shared memory multithreading (OpenMP)

• libavsipl_c_dbg.a Non-performance tuned library with extensive error checking.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

8

CONTENTS 0.3. GENERAL FUNCTIONS

0.3 General Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

9

0.3. GENERAL FUNCTIONS CONTENTS

0.3.1 vsip_cstorage_p - Complex storage type
typedef enum _vsip_cmplx_mem {

VSIP_CMPLX_INTERLEAVED,

VSIP_CMPLX_SPLIT,

VSIP_CMPLX_NONE

} vsip_cmplx_mem;

vsip_cmplx_mem vsip_cstorage_f(void);

/* deprecated */

vsip_cmplx_mem vsip_cstorage(void);

Description

These functions query the manner in which complex values are stored. This can be in interleaved (real followed by
imaginary part in one vector) or split format (two separate vectors).

Return Value

• Returns one of the enumerator values.

Example

vsip_cmplx_mem complex_storage;

// Allocate complex storage using the preferred method

complex_storage = vsip_cstorage_f();

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

10

Chapter 1

Support Functions

11

1.1. INITIALIZATION FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.1 Initialization Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

12

CHAPTER 1. SUPPORT FUNCTIONS 1.1. INITIALIZATION FUNCTIONS

1.1.1 vsip_init - Initialize
int vsip_init(void*);

Description

This function initializes the VSIPL library and must be called before any other VSIPL functions are used. It can be
called multiple times without side effects.

Parameters

• void*: The argument is unused and should be set to 0 or NULL.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error.

Example

int result;

// Initialize the VSIPL library

result = vsip_init(NULL);

if (result != 0) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

13

1.1. INITIALIZATION FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.1.2 vsip_finalize - Finalize
int vsip_finalize(void*);

Description

This function finalizes the VSIPL library, releasing all internal resources and memory. After calling this function, no
other VSIPL functions may be called. The function can be called in a nested manner, but only the outermost call will
actually free up the internal initialization memory.

Parameters

• void*: The argument is unused and should be set to 0 or NULL.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error.

Example

int result;

// Finalize the VSIPL library

result = vsip_finalize(NULL);

if (result != 0) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

14

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

1.2 Block Support Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

15

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.1 vsip_d blockcreate_p - Create a block
typedef enum _vsip_memory_hint {

VSIP_MEM_NONE = 0,

VSIP_MEM_RDONLY = 1,

VSIP_MEM_CONST = 2,

VSIP_MEM_SHARED = 3,

VSIP_MEM_SHARED_RDONLY = 4,

VSIP_MEM_SHARED_CONST = 5

} vsip_memory_hint;

vsip_block_f* vsip_blockcreate_f(vsip_length n, vsip_memory_hint h);

vsip_block_i* vsip_blockcreate_i(vsip_length n, vsip_memory_hint h);

vsip_block_bl* vsip_blockcreate_bl(vsip_length n, vsip_memory_hint h);

vsip_block_vi* vsip_blockcreate_vi(vsip_length n, vsip_memory_hint h);

vsip_block_mi* vsip_blockcreate_mi(vsip_length n, vsip_memory_hint h);

vsip_cblock_f* vsip_cblockcreate_f(vsip_length n, vsip_memory_hint h);

Description

These functions create a block of data of the specified type with n > 0 elements. The memory hint h describes how this
data is intended to be used, such as read-only, constant, or shared memory.

Parameters

• vsip_length n: The number of elements in the block. Must be greater than 0.

• vsip_memory_hint h: Memory hint for the block, indicating properties such as read-only, constant, or shared
memory.

– VSIP_MEM_NONE - No memory hint

– VSIP_MEM_RDONLY - The memory is to be used read-only

– VSIP_MEM_CONST - The memory will hold constants

– VSIP_MEM_SHARED - The memory will be shared

– VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only

– VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

• On success, a pointer to the newly created block object is returned.

• On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_length length = 10;
vsip_memory_hint hint = VSIP_MEM_NONE;

vsip_block_f *float_block;

// Create a float block

float_block = vsip_blockcreate_f(length, hint);

if (float_block == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

16

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

vsip_block_i *int_block;

// Create an integer block

int_block = vsip_blockcreate_i(length, hint);

if (int_block == NULL) {

// Handle error

}

vsip_cblock_f *complex_block;

// Create a complex float block

complex_block = vsip_cblockcreate_f(length, hint);

if (complex_block == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

17

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.2 vsip_blockbind_p - Create a block using existing data
typedef enum _vsip_memory_hint {

VSIP_MEM_NONE = 0,

VSIP_MEM_RDONLY = 1,

VSIP_MEM_CONST = 2,

VSIP_MEM_SHARED = 3,

VSIP_MEM_SHARED_RDONLY = 4,

VSIP_MEM_SHARED_CONST = 5

} vsip_memory_hint;

vsip_block_f* vsip_blockbind_f(vsip_scalar_f *p, vsip_length n, vsip_memory_hint h);

vsip_block_i* vsip_blockbind_i(vsip_scalar_i *p, vsip_length n, vsip_memory_hint h);

vsip_block_bl* vsip_blockbind_bl(vsip_scalar_bl *p, vsip_length n, vsip_memory_hint h);

vsip_block_vi* vsip_blockbind_vi(vsip_scalar_vi *p, vsip_length n, vsip_memory_hint h);

vsip_block_mi* vsip_blockbind_mi(vsip_scalar_mi *p, vsip_length n, vsip_memory_hint h);

Description

These functions create a new data block using an existing data array p with n > 0 elements and a given memory hint h.
The block must be admitted before it can be used.

Parameters

• vsip_scalar_p *p: Pointer to the existing data array.

• vsip_length n: The number of elements in the data array. Must be greater than 0.

• vsip_memory_hint h: Memory hint for the block, indicating properties such as read-only, constant, or shared
memory.

– VSIP_MEM_NONE - No memory hint

– VSIP_MEM_RDONLY - The memory is to be used read-only

– VSIP_MEM_CONST - The memory will hold constants

– VSIP_MEM_SHARED - The memory will be shared

– VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only

– VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

• On success, a pointer to the newly created block object is returned.

• On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_scalar_f float_data[10]; // Example float data array

vsip_length length = 10;

vsip_memory_hint hint = VSIP_MEM_NONE;

vsip_block_f *float_block;

// Create a float block

float_block = vsip_blockbind_f(float_data, length, hint);

if (float_block == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

18

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

// Admit the block before using it

int result = vsip_blockadmit_f(float_block, VSIP_TRUE);

if (result != 0) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

19

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.3 vsip_cblockbind_p - Create a block using existing data (complex)
typedef enum _vsip_memory_hint {

VSIP_MEM_NONE = 0,

VSIP_MEM_RDONLY = 1,

VSIP_MEM_CONST = 2,

VSIP_MEM_SHARED = 3,

VSIP_MEM_SHARED_RDONLY = 4,

VSIP_MEM_SHARED_CONST = 5

} vsip_memory_hint;

vsip_cblock_f* vsip_cblockbind_f(vsip_scalar_f *r, vsip_scalar_f *i, vsip_length n, vsip_memory_hint h);

Description

This function creates a new complex data block using existing data, which can be either interleaved complex numbers
or split real and imaginary data arrays. If the imaginary data array i is NULL, it is assumed that r is interleaved and
contains 2n > 0 elements. If the imaginary data array is provided, it is assumed that each of the r and i arrays contains
n > 0 elements.

The block must be admitted before it can be used.

Parameters

• vsip_scalar_p *r: Pointer to the real part array or the interleaved array.

• vsip_scalar_p *i: Pointer to the imaginary part array. If NULL, r is assumed to be interleaved.

• vsip_length n: The number of complex elements. Must be greater than 0.

• vsip_memory_hint h: Memory hint for the block, indicating properties such as read-only, constant, or shared
memory.

– VSIP_MEM_NONE - No memory hint

– VSIP_MEM_RDONLY - The memory is to be used read-only

– VSIP_MEM_CONST - The memory will hold constants

– VSIP_MEM_SHARED - The memory will be shared

– VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only

– VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

• On success, a pointer to the newly created complex block object is returned.

• On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_scalar_f real_data[10]; // Example data array

vsip_scalar_f imag_data[10]; // Example imaginary data array

vsip_length length = 10;

vsip_memory_hint hint = VSIP_MEM_NONE;

vsip_cblock_f *block;

// Create a block with split real and imaginary data

block = vsip_cblockbind_f(real_data, imag_data, length, hint);

if (block == NULL) {

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

20

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

// Handle error

}

// Admit the block before using it

int result = vsip_cblockadmit_f(block, VSIP_TRUE);

if (result != 0) {

// Handle error

}

// Create a block with interleaved data

vsip_scalar_f interleaved_data[20]; // Example interleaved data array

block = vsip_cblockbind_f(interleaved_data, NULL, length, hint);

if (block == NULL) {

// Handle error

}

// Admit the block before using it

result = vsip_cblockadmit_f(block, VSIP_TRUE);

if (result != 0) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

21

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.4 vsip_blockrebind_p - Rebind existing block
vsip_scalar_f* vsip_blockrebind_f(vsip_block_f *p, vsip_scalar_f *d);
vsip_scalar_i* vsip_blockrebind_i(vsip_block_i *p, vsip_scalar_i *d);

vsip_scalar_bl* vsip_blockrebind_bl(vsip_block_bl *p, vsip_scalar_bl *d);

vsip_scalar_vi* vsip_blockrebind_vi(vsip_block_vi *p, vsip_scalar_vi *d);

vsip_scalar_mi* vsip_blockrebind_mi(vsip_block_mi *p, vsip_scalar_mi *d);

Description

These functions rebind an existing block p to a new user data array d. The new data array must have the same size as
the originally bound data array.

The block must be in the released state to be rebound. After rebinding, the block must be admitted before it can be
used.

A pointer to the previously bound user data array is returned. If an error occurs, NULL is returned.

Parameters

• vsip_block_p *p: Pointer to the block to be rebound.

• vsip_scalar_p *d: Pointer to the new user data array.

Return Value

• On success, a pointer to the previously bound user data array is returned.

• On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_block_f *float_block;
vsip_scalar_f *new_data;

vsip_scalar_f *old_data;

// Assuming float_block has been properly initialized and is in the released state

old_data = vsip_blockrebind_f(float_block, new_data);

if (old_data == NULL) {

// Handle error

}

// Admit the block before using it

int result = vsip_blockadmit_f(float_block, VSIP_TRUE);

if (result != 0) {

// Handle error

}

vsip_block_i *int_block;

vsip_scalar_i *new_int_data;

vsip_scalar_i *old_int_data;

// Assuming int_block has been properly initialized and is in the released state

old_int_data = vsip_blockrebind_i(int_block, new_int_data);

if (old_int_data == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

22

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

// Admit the block before using it

result = vsip_blockadmit_i(int_block, VSIP_TRUE);

if (result != 0) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

23

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.5 vsip_cblockrebind_p - Rebind existing block (complex)
void vsip_cblockrebind_f(vsip_cblock_f *p, vsip_scalar_f *r, vsip_scalar_f *i, vsip_scalar_f **rr, vsip_scalar_f **ir);

Description

This function rebinds an existing complex block p to new real and imaginary part arrays r and i. If i is NULL, it is
implied that r points to an interleaved array. The new array(s) must have the same size as the originally bound data
array(s).

The block must be in the released state to be rebound. After rebinding, the block must be admitted before it can be
used.

The previously bound data array(s) are stored in rr and ir. If the originally bound data is interleaved, ir will be set
to NULL. On error, both rr and ir will be set to NULL.

Parameters

• vsip_cblock_p *p: Pointer to the complex block to be rebound.

• vsip_scalar_p *r: Pointer to the new real part array.

• vsip_scalar_p *i: Pointer to the new imaginary part array. If NULL, r is assumed to point to an interleaved
array.

• vsip_scalar_p **rr: Pointer to store the previously bound real part array.

• vsip_scalar_p **ir: Pointer to store the previously bound imaginary part array. Will be NULL if the original
data is interleaved.

Error Handling

On error, both rr and ir are set to NULL.

Example

vsip_cblock_f *block;
vsip_scalar_f *new_real_part;

vsip_scalar_f *new_imag_part = NULL; // For interleaved data

vsip_scalar_f *old_real_part;

vsip_scalar_f *old_imag_part;

// Assuming block has been properly initialized and is in the released state

vsip_cblockrebind_f(block, new_real_part, new_imag_part, &old_real_part, &old_imag_part);

if (old_real_part == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

24

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

1.2.6 vsip_d blockadmit_p - Admit block data
int vsip_blockadmit_f(vsip_block_f *b, vsip_scalar_bl s);
int vsip_blockadmit_i(vsip_block_i *b, vsip_scalar_bl s);

int vsip_blockadmit_bl(vsip_block_bl *b, vsip_scalar_bl s);

int vsip_blockadmit_vi(vsip_block_vi *b, vsip_scalar_bl s);

int vsip_blockadmit_mi(vsip_block_mi *b, vsip_scalar_bl s);

int vsip_cblockadmit_f(vsip_cblock_f*, vsip_scalar_bl s);

Description

These functions admit user data to the given block b. After calling this function, the user array may no longer be man-
ually manipulated outside of VSIPL routines. The boolean flag s indicates whether the user data should be consistent
with the block data. In most cases, s should be set to VSIP_TRUE.

Parameters

• vsip_d block_p *b: Pointer to the block to which user data is to be admitted.

• vsip_scalar_bl s: Boolean flag indicating whether the user data should be consistent with the block data.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error.

Error Handling

If an error occurs, the function returns a non-zero value.

Example

vsip_block_f *float_block;
vsip_scalar_bl consistent = VSIP_TRUE;

int result;

// Assuming float_block has been properly initialized

result = vsip_blockadmit_f(float_block, consistent);

if (result != 0) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

25

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.7 vsip_blockfind_p - Get user data
vsip_scalar_f* vsip_blockfind_f(const vsip_block_f *p);
vsip_scalar_i* vsip_blockfind_i(const vsip_block_i *p);

vsip_scalar_bl* vsip_blockfind_bl(const vsip_block_bl *p);

vsip_scalar_vi* vsip_blockfind_vi(const vsip_block_vi *p);

vsip_scalar_mi* vsip_blockfind_mi(const vsip_block_mi *p);

Description

These functions return a pointer to the user data array bound to the given block p. The block must have been bound
previously and must be in the released state before calling these functions.

Parameters

• const vsip_block_p *p: Pointer to the block whose user data array is to be queried.

Return Value

• On success, a pointer to the user data array is returned.

• On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_block_f *float_block;
vsip_scalar_f *float_data;

// Assuming float_block has been properly initialized, bound, and released

float_data = vsip_blockfind_f(float_block);

if (float_data == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

26

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

1.2.8 vsip_cblockfind_p - Get user data (complex)
void vsip_cblockfind_f(const vsip_cblock_f *p, vsip_scalar_f **rr, vsip_scalar_f **ri);

Description

This function queries the user data array(s) of the given complex block p. Depending on the data format, the function
sets the pointers rr and ri accordingly:

• If the data is in interleaved format, only rr will be set, and ri will be set to NULL.

• If the data is in split format, both rr and ri will be set to point to the real and imaginary parts, respectively.

The block must have been bound previously and must be in the released state before calling this function.

Parameters

• const vsip_cblock_p *p: Pointer to the complex block whose user data arrays are to be queried.

• vsip_scalar_p **rr: Pointer to the real part of the user array.

• vsip_scalar_p **ri: Pointer to the imaginary part of the user array.

Error Handling

On error, both rr and ri are set to NULL.

Example

vsip_cblock_f *block;
vsip_scalar_f *real_part;

vsip_scalar_f *imag_part;

// Assuming block has been properly initialized, bound, and released

vsip_cblockfind_f(block, &real_part, &imag_part);

if (real_part == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

27

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.9 vsip_blockrelease_p - Release a block
vsip_scalar_f* vsip_blockrelease_f(vsip_block_f *b, vsip_scalar_bl u);
vsip_scalar_i* vsip_blockrelease_i(vsip_block_i *b,vsip_scalar_bl u);

vsip_scalar_bl* vsip_blockrelease_bl(vsip_block_bl *b,vsip_scalar_bl u);

vsip_scalar_vi* vsip_blockrelease_vi(vsip_block_vi *b,vsip_scalar_bl u);

vsip_scalar_mi* vsip_blockrelease_mi(vsip_block_mi *b,vsip_scalar_bl u);

Description

These functions release the user arrays in a block b and return a pointer to the user data array. The flag u determines
whether the data must be maintained during the state change. The block must have been bound previously.

Parameters

• vsip_block_p *: Pointer to the block to be released.

• vsip_scalar_bl u: Flag indicating whether the data should be maintained.

Return Value

• On success, a pointer to the user data array is returned.

• On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_block_f *float_block;
vsip_scalar_bl maintain_data = VSIP_TRUE;

vsip_scalar_f *float_data;

// Assuming float_block has been properly initialized and bound

float_data = vsip_blockrelease_f(float_block, maintain_data);

if (float_data == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

28

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

1.2.10 vsip_cblockrelease_p - Release a block (complex)
void vsip_cblockrelease_f(vsip_cblock_f *b, vsip_scalar_bl u, vsip_scalar_f **rr, vsip_scalar_f **ri);

Description

This function releases the complex block b and queries the user array(s). Depending on the data format, the function
sets the pointers rr and ri accordingly:

• If the data is in interleaved format, only rr will be set, and ri will be set to NULL.

• If the data is in split format, both rr and ri will be set to point to the real and imaginary parts, respectively.

The flag u determines whether the data must be maintained during the state change. The block must have been bound
previously and must be in the released state before calling this function.

Parameters

• vsip_cblock_p *b: Pointer to the complex block to be released.

• vsip_scalar_bl u: Flag indicating whether the data should be maintained.

• vsip_scalar_p **rr: Pointer to the real part of the user array.

• vsip_scalar_p **ri: Pointer to the imaginary part of the user array.

Error Handling

On error, both rr and ri are set to NULL.

Example

vsip_cblock_f *block;
vsip_scalar_bl maintain_data = VSIP_TRUE;

vsip_scalar_f *real_part;

vsip_scalar_f *imag_part;

// Assuming block has been properly initialized and bound

vsip_cblockrelease_f(block, maintain_data, &real_part, &imag_part);

if (real_part == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

29

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.11 vsip_d blockdestroy_p - Destroy a block
void vsip_blockdestroy_f(vsip_block_f *b);
void vsip_blockdestroy_i(vsip_block_i *b);

void vsip_blockdestroy_bl(vsip_block_bl *b);

void vsip_blockdestroy_vi(vsip_block_vi *b);

void vsip_blockdestroy_mi(vsip_block_mi *b);

void vsip_cblockdestroy_f(vsip_cblock_f *b);

Description

These functions destroy the block specified by the pointer b. Destroying a block involves deallocating the memory
associated with it and performing any necessary cleanup operations. After calling one of these functions, the block
pointer b becomes invalid and should not be used further.

Parameters

• vsip_d block_p *b Pointer to a floating-point or integer block to be destroyed.

Return Value

These functions do not return a value.

Example

vsip_block_f *block = vsip_blockcreate_f(10, VSIP_MEM_NONE);
// Use the block...

vsip_blockdestroy_f(block); // Destroy the block when done

Notes

Ensure that the block pointer is valid and has been properly initialized before calling these functions. Attempting to
destroy an already destroyed block or an invalid pointer may result in undefined behavior.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

30

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3 Vector View Support Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

31

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.1 vsip_d vcreate_p - Create a Vector View
typedef enum _vsip_memory_hint {

VSIP_MEM_NONE = 0,

VSIP_MEM_RDONLY = 1,

VSIP_MEM_CONST = 2,

VSIP_MEM_SHARED = 3,

VSIP_MEM_SHARED_RDONLY = 4,

VSIP_MEM_SHARED_CONST = 5

} vsip_memory_hint;

vsip_vview_f* vsip_vcreate_f(vsip_length n, vsip_memory_hint h);

vsip_vview_bl* vsip_vcreate_bl(vsip_length n, vsip_memory_hint h);

vsip_vview_vi* vsip_vcreate_vi(vsip_length n, vsip_memory_hint h);

vsip_vview_mi* vsip_vcreate_mi(vsip_length n, vsip_memory_hint h);

vsip_cvview_f* vsip_cvcreate_f(vsip_length n, vsip_memory_hint h);

Description

This function creates a vector view of the specified length n with a given memory hint h. The memory hint describes
how the data is intended to be used, such as read-only, constant, or shared memory.

Parameters

• vsip_length n: The number of elements in the vector view. Must be greater than 0.

• vsip_memory_hint h: Memory hint for the vector view, indicating properties such as read-only, constant, or
shared memory.

– VSIP_MEM_NONE - No memory hint

– VSIP_MEM_RDONLY - The memory is to be used read-only

– VSIP_MEM_CONST - The memory will hold constants

– VSIP_MEM_SHARED - The memory will be shared

– VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only

– VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

• On success, a pointer to the newly created vector view object is returned.

• On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_length length = 10;
vsip_memory_hint hint = VSIP_MEM_NONE;

vsip_vview_f *vector_view;

// Create a vector view

vector_view = vsip_vcreate_f(length, hint);

if (vector_view == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

32

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.2 vsip_d vbind_p - Bind a Vector View to a Data Block
vsip_vview_f* vsip_vbind_f(const vsip_block_f* b, vsip_offset o, vsip_stride s, vsip_length n);
vsip_vview_i* vsip_vbind_i(const vsip_block_i* b, vsip_offset o, vsip_stride s, vsip_length n);

vsip_vview_bl* vsip_vbind_bl(const vsip_block_bl* b, vsip_offset o, vsip_stride s, vsip_length n);

vsip_vview_vi* vsip_vbind_vi(const vsip_block_vi* b, vsip_offset o, vsip_stride s, vsip_length n);

vsip_vview_mi* vsip_vbind_mi(const vsip_block_mi* b, vsip_offset o, vsip_stride s, vsip_length n);

vsip_vview_i* vsip_cvbind_f(const vsip_cblock_f* b, vsip_offset o, vsip_stride s, vsip_length n);

Description

This function binds a vector view to an existing data block b with a specified offset o, stride s, and length n. The vector
view provides a view into the data block starting from the offset and stepping by the stride for the specified length.

Parameters

• const vsip_d block_p * b: Pointer to the data block to which the vector view will be bound.

• vsip_offset o: Offset within the data block where the vector view starts.

• vsip_stride s: Stride between elements in the vector view.

• vsip_length n: The number of elements in the vector view.

Return Value

• On success, a pointer to the newly created vector view object is returned.

• On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_block_f *data_block;
vsip_offset offset = 0;

vsip_stride stride = 1;

vsip_length length = 10;

vsip_vview_f *vector_view;

// Assuming data_block has been properly initialized

vector_view = vsip_vbind_f(data_block, offset, stride, length);

if (vector_view == NULL) {

// Handle error

}

// The vector view is now bound to the data block

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

33

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.3 vsip_d vcloneview_p - Clone a Vector View
vsip_vview_f* vsip_vcloneview_f(const vsip_vview_f* v);
vsip_vview_bl* vsip_vcloneview_bl(const vsip_vview_bl* v);

vsip_vview_vi* vsip_vcloneview_vi(const vsip_vview_vi* v);

vsip_vview_mi* vsip_vcloneview_mi(const vsip_vview_mi* v);

vsip_cvview_f* vsip_cvcloneview_f(const vsip_cvview_f* v);

Description

This function creates a new vector view that shares the same underlying data block as the input vector view but has its
own independent view parameters. The cloned view references the same data as the original view but maintains its own
metadata (length, stride, offset, and block).

Parameters

• const vsip_d vview_p * v: Pointer to the source complex vector view to be cloned.

Return Value

• On success, returns a pointer to the newly created complex vector view that shares data with the input view.

• On error, returns NULL.

Example

vsip_cvview_f *original_vector;
vsip_cvview_f *cloned_vector;

vsip_length i;

// Create a complex vector

original_vector = vsip_cvcreate_f(10, VSIP_MEM_NONE);

// Clone the vector view

cloned_vector = vsip_cvcloneview_f(original_vector);

if (cloned_vector == NULL) {

// Handle error

}

Notes

• The cloned view shares the same underlying data block as the source complex vector.

• Changes to the data through one view will be visible through all other views that share the same data block.

• The cloned view has the same length, stride, and offset as the original view.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

34

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.4 vsip_d vget_p - Get an Element from a Vector View
vsip_scalar_f vsip_vget_f(const vsip_vview_f* v, vsip_index j);
vsip_scalar_bl vsip_vget_bl(const vsip_vview_bl* v, vsip_index j);

vsip_scalar_vi vsip_vget_vi(const vsip_vview_vi* v, vsip_index j);

vsip_scalar_mi vsip_vget_mi(const vsip_vview_mi* v, vsip_index j);

vsip_cscalar_f vsip_cvget_f(const vsip_cvview_f* v, vsip_index j);

Description

This function retrieves the element at the specified index j from the vector view v.

Parameters

• const vsip_d vview_p * v: Pointer to the vector view.

• vsip_index j: Index of the element to retrieve.

Return Value

• The value of the element at the specified index.

Example

vsip_vview_f *vector_view;
vsip_index index = 3;

vsip_scalar_f value;

// Assuming vector_view has been properly initialized

value = vsip_vget_f(vector_view, index);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

35

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.5 vsip_d vput_p - Set an Element in a Vector View
void vsip_vput_f(const vsip_vview_f* v, vsip_index j, vsip_scalar_f x);
void vsip_vput_bl(const vsip_vview_bl* v, vsip_index j, vsip_scalar_bl x);

void vsip_vput_vi(const vsip_vview_vi* v, vsip_index j, vsip_scalar_vi x);

void vsip_vput_mi(const vsip_vview_mi* v, vsip_index j, vsip_scalar_mi x);

void vsip_cvput_f(const vsip_cvview_f* v, vsip_index j, vsip_cscalar_f x);

Description

This function sets the element at the specified index j in the vector view v to the value x.

Parameters

• const vsip_d vview_p * v: Pointer to the vector view.

• vsip_index j: Index of the element to set.

• vsip_d scalar_p x: The new value for the element.

Example

vsip_vview_f *vector_view;
vsip_index index = 3;

vsip_scalar_f new_value = 10.0;

// Assuming vector_view has been properly initialized

vsip_vput_f(vector_view, index, new_value);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

36

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.6 vsip_d vsubview_p - Create a Subview of a Vector View
vsip_vview_f* vsip_vsubview_f(const vsip_vview_f* v, vsip_index j, vsip_length n);
vsip_vview_bl* vsip_vsubview_bl(const vsip_vview_bl* v, vsip_index j, vsip_length n);

vsip_vview_vi* vsip_vsubview_vi(const vsip_vview_vi* v, vsip_index j, vsip_length n);

vsip_vview_mi* vsip_vsubview_mi(const vsip_vview_mi* v, vsip_index j, vsip_length n);

vsip_cvview_f* vsip_cvsubview_f(const vsip_cvview_f* v, vsip_index j, vsip_length n);

Description

This function creates a subview of an existing vector view v, starting from the index j and extending for n elements. The
subview provides a view into a subset of the original vector view.

Parameters

• const vsip_d vview_p * v: Pointer to the original vector view from which the subview will be created.

• vsip_index j: Starting index within the original vector view for the subview.

• vsip_length n: The number of elements in the subview.

Return Value

• On success, a pointer to the newly created subview object is returned.

• On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_vview_f *original_view;
vsip_index start_index = 5;

vsip_length subview_length = 10;

vsip_vview_f *subview;

// Assuming original_view has been properly initialized

subview = vsip_vsubview_f(original_view, start_index, subview_length);

if (subview == NULL) {

// Handle error

}

// The subview is now a view into a subset of the original vector view

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

37

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.7 vsip_vrealview_p - Get the Real Part View of a Complex Vector View
vsip_vview_f* vsip_vrealview_f(const vsip_cvview_f* v);

Description

This function returns a view of the real part of the complex vector view v.

Parameters

• const vsip_cvview_p * v: Pointer to the complex vector view.

Return Value

• On success, a pointer to the real part view of the complex vector view is returned.

• On error, NULL is returned.

Example

vsip_cvview_f *complex_vector_view;
vsip_vview_f *real_part_view;

// Assuming complex_vector_view has been properly initialized

real_part_view = vsip_vrealview_f(complex_vector_view);

if (real_part_view == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

38

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.8 vsip_vimagview_p - Get the Imaginary Part View of a Complex Vector View
vsip_vview_f* vsip_vimagview_f(const vsip_cvview_f* v);

Description

This function returns a view of the imaginary part of the complex vector view v.

Parameters

• const vsip_cvview_p * v: Pointer to the complex vector view.

Return Value

• On success, a pointer to the imaginary part view of the complex vector view is returned.

• On error, NULL is returned.

Example

vsip_cvview_f *complex_vector_view;
vsip_vview_f *imaginary_part_view;

// Assuming complex_vector_view has been properly initialized

imaginary_part_view = vsip_vimagview_f(complex_vector_view);

if (imaginary_part_view == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

39

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.9 vsip_d vgetattrib_p - Get the Attributes of a Vector View
typedef struct _vsip_vattr_f {

vsip_offset offset;

vsip_stride stride;

vsip_length length;

vsip_block_f *block;

} vsip_vattr_f;

/* same for other datatypes with the respective vsip_dblock_p */

void vsip_vgetattrib_f(const vsip_vview_f* v, vsip_vattr_f *a);

void vsip_vgetattrib_i(const vsip_vview_i* v, vsip_vattr_i *a);

void vsip_vgetattrib_bl(const vsip_vview_bl* v, vsip_vattr_bl *a);

void vsip_vgetattrib_vi(const vsip_vview_vi* v, vsip_vattr_vi *a);

void vsip_vgetattrib_mi(const vsip_vview_mi* v, vsip_vattr_mi *a);

void vsip_cvgetattrib_f(const vsip_cvview_f* v, vsip_cvattr_f *a);

Description

This function retrieves the attributes of the vector view v and stores them in the structure pointed to by a.

Parameters

• const vsip_d vview_p * v: Pointer to the vector view.

• vsip_d vattr_p *a: Pointer to a structure where the attributes will be stored.

Example

vsip_vview_f *vector_view;
vsip_vattr_f attributes;

// Assuming vector_view has been properly initialized

vsip_vgetattrib_f(vector_view, &attributes);

// The attributes of the vector view are now stored in 'attributes'

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

40

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.10 vsip_d vputattrib_p - Set the Attributes of a Vector View
typedef struct _vsip_vattr_f {

vsip_offset offset;

vsip_stride stride;

vsip_length length;

vsip_block_f *block;

} vsip_vattr_f;

/* same for other datatypes with the respective vsip_dblock_p */

vsip_vview_f* vsip_vputattrib_f(vsip_vview_f* v, const vsip_vattr_f *a);

vsip_vview_i* vsip_vputattrib_i(vsip_vview_i* v, const vsip_vattr_i *a);

vsip_vview_bl* vsip_vputattrib_bl(vsip_vview_bl* v, const vsip_vattr_bl *a);

vsip_vview_vi* vsip_vputattrib_vi(vsip_vview_vi* v, const vsip_vattr_vi *a);

vsip_vview_mi* vsip_vputattrib_mi(vsip_vview_mi* v, const vsip_vattr_mi *a);

vsip_cvview_f* vsip_cvputattrib_f(vsip_cvview_f* v, const vsip_cvattr_f *a);

Description

This function sets the attributes of the vector view v to the values specified in the structure pointed to by a.

Parameters

• vsip_d vview_p * v: Pointer to the vector view.

• const vsip_d vattr_p *a: Pointer to a structure containing the new attributes.

Return Value

• On success, a pointer to the modified vector view is returned.

• On error, NULL is returned.

Example

vsip_vview_f *vector_view;
vsip_vattr_f new_attributes;

// Assuming vector_view has been properly initialized and new_attributes is set

vector_view = vsip_vputattrib_f(vector_view, &new_attributes);

if (vector_view == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

41

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.11 vsip_d vgetblock_p - Get the Data Block of a Vector View
vsip_block_f* vsip_vgetblock_f(const vsip_vview_f* v);
vsip_block_bl* vsip_vgetblock_bl(const vsip_vview_bl* v);

vsip_block_vi* vsip_vgetblock_vi(const vsip_vview_vi* v);

vsip_block_mi* vsip_vgetblock_mi(const vsip_vview_mi* v);

vsip_cblock_f* vsip_cvgetblock_f(const vsip_cvview_f* v);

Description

This function returns the data block associated with the vector view v.

Parameters

• const vsip_d vview_p * v: Pointer to the vector view.

Return Value

• On success, a pointer to the data block is returned.

• On error, NULL is returned.

Example

vsip_vview_f *vector_view;
vsip_block_f *data_block;

// Assuming vector_view has been properly initialized

data_block = vsip_vgetblock_f(vector_view);

if (data_block == NULL) {

// Handle error

}

x

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

42

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.12 vsip_d vgetlength_p - Get the Length of a Vector View
vsip_length vsip_vgetlength_f(const vsip_vview_f* v);
vsip_length vsip_vgetlength_bl(const vsip_vview_bl* v);

vsip_length vsip_vgetlength_vi(const vsip_vview_vi* v);

vsip_length vsip_vgetlength_mi(const vsip_vview_mi* v);

vsip_length vsip_cvgetlength_f(const vsip_cvview_f* v);

Description

This function returns the length of the vector view v.

Parameters

• const vsip_d vview_p * v: Pointer to the vector view.

Return Value

• The length of the vector view.

Example

vsip_vview_f *vector_view;
vsip_length length;

// Assuming vector_view has been properly initialized

length = vsip_vgetlength_f(vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

43

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.13 vsip_d vputlength_p - Set the Length of a Vector View
vsip_vview_f* vsip_vputlength_f(vsip_vview_f* v, vsip_length n);
vsip_vview_bl* vsip_vputlength_bl(vsip_vview_bl* v, vsip_length n);

vsip_vview_vi* vsip_vputlength_vi(vsip_vview_vi* v, vsip_length n);

vsip_vview_mi* vsip_vputlength_mi(vsip_vview_mi* v, vsip_length n);

vsip_cvview_f* vsip_cvputlength_f(vsip_cvview_f* v, vsip_length n);

Description

This function sets the length of the vector view v to the specified value n.

Parameters

• vsip_d vview_p * v: Pointer to the vector view.

• vsip_length n: The new length of the vector view.

Return Value

• On success, a pointer to the modified vector view is returned.

• On error, NULL is returned.

Example

vsip_vview_f *vector_view;
vsip_length new_length = 15;

// Assuming vector_view has been properly initialized

vector_view = vsip_vputlength_f(vector_view, new_length);

if (vector_view == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

44

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.14 vsip_d vgetstride_p - Get the Stride of a Vector View
vsip_stride vsip_vgetstride_f(const vsip_vview_f* v);
vsip_stride vsip_vgetstride_bl(const vsip_vview_bl* v);

vsip_stride vsip_vgetstride_vi(const vsip_vview_vi* v);

vsip_stride vsip_vgetstride_mi(const vsip_vview_mi* v);

vsip_stride vsip_cvgetstride_f(const vsip_cvview_f* v);

Description

This function returns the stride between elements in the vector view v.

Parameters

• const vsip_d vview_p * v: Pointer to the vector view.

Return Value

• The stride between elements in the vector view.

Example

vsip_vview_f *vector_view;
vsip_stride stride;

// Assuming vector_view has been properly initialized

stride = vsip_vgetstride_f(vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

45

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.15 vsip_d vputstride_p - Set the Stride of a Vector View
vsip_vview_f* vsip_vputstride_f(vsip_vview_f* v, vsip_stride s);
vsip_vview_bl* vsip_vputstride_bl(vsip_vview_bl* v, vsip_stride s);

vsip_vview_vi* vsip_vputstride_vi(vsip_vview_vi* v, vsip_stride s);

vsip_vview_mi* vsip_vputstride_mi(vsip_vview_mi* v, vsip_stride s);

vsip_cvview_f* vsip_cvputstride_f(vsip_cvview_f* v, vsip_stride s);

Description

This function sets the stride between elements in the vector view v to the specified value s.

Parameters

• vsip_d vview_p * v: Pointer to the vector view.

• vsip_stride s: The new stride between elements.

Return Value

• On success, a pointer to the modified vector view is returned.

• On error, NULL is returned.

Example

vsip_vview_f *vector_view;
vsip_stride new_stride = 2;

// Assuming vector_view has been properly initialized

vector_view = vsip_vputstride_f(vector_view, new_stride);

if (vector_view == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

46

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.16 vsip_d vgetoffset_p - Get the Offset of a Vector View
vsip_offset vsip_vgetoffset_f(const vsip_vview_f* v);
vsip_offset vsip_vgetoffset_bl(const vsip_vview_bl* v);

vsip_offset vsip_vgetoffset_vi(const vsip_vview_vi* v);

vsip_offset vsip_vgetoffset_mi(const vsip_vview_mi* v);

vsip_offset vsip_cvgetoffset_f(const vsip_cvview_f* v);

Description

This function returns the offset within the data block where the vector view v starts.

Parameters

• const vsip_d vview_p * v: Pointer to the vector view.

Return Value

• The offset within the data block.

Example

vsip_vview_f *vector_view;
vsip_offset offset;

// Assuming vector_view has been properly initialized

offset = vsip_vgetoffset_f(vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

47

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.17 vsip_d vputoffset_p - Set the Offset of a Vector View
vsip_vview_f* vsip_vputoffset_f(vsip_vview_f* v, vsip_offset o);
vsip_vview_bl* vsip_vputoffset_bl(vsip_vview_bl* v, vsip_offset o);

vsip_vview_vi* vsip_vputoffset_vi(vsip_vview_vi* v, vsip_offset o);

vsip_vview_mi* vsip_vputoffset_mi(vsip_vview_mi* v, vsip_offset o);

vsip_cvview_f* vsip_cvputoffset_f(vsip_cvview_f* v, vsip_offset o);

Description

This function sets the offset within the data block for the vector view v to the specified value o.

Parameters

• vsip_d vview_p * v: Pointer to the vector view.

• vsip_offset o: The new offset within the data block.

Return Value

• On success, a pointer to the modified vector view is returned.

• On error, NULL is returned.

Example

vsip_vview_f *vector_view;
vsip_offset new_offset = 5;

// Assuming vector_view has been properly initialized

vector_view = vsip_vputoffset_f(vector_view, new_offset);

if (vector_view == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

48

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.18 vsip_d vdestroy_p - Destroy a Vector View
vsip_block_f* vsip_vdestroy_f(vsip_vview_f* v);
vsip_block_i* vsip_vdestroy_i(vsip_vview_i* v);

vsip_block_bl* vsip_vdestroy_bl(vsip_vview_bl* v);

vsip_block_vi* vsip_vdestroy_vi(vsip_vview_vi* v);

vsip_block_mi* vsip_vdestroy_mi(vsip_vview_mi* v);

vsip_cblock_f* vsip_cvdestroy_f(vsip_cvview_f* v);

Description

This function destroys a vector view v and returns a pointer to the underlying data block. After calling this function,
the vector view is no longer valid, but the data block can still be used.

Parameters

• vsip_d vview_p * v: Pointer to the vector view to be destroyed.

Return Value

• On success, a pointer to the underlying data block is returned.

• On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_vview_f *vector_view;
vsip_block_f *data_block;

// Assuming vector_view has been properly initialized

data_block = vsip_vdestroy_f(vector_view);

if (data_block == NULL) {

// Handle error

}

// The data block can still be used after the vector view is destroyed

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

49

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.19 vsip_d valldestroy_p - Destroy a Vector View and Its Data Block
void vsip_valldestroy_f(vsip_vview_f *v);
void vsip_valldestroy_bl(vsip_vview_bl *v);

void vsip_valldestroy_vi(vsip_vview_vi *v);

void vsip_valldestroy_mi(vsip_vview_mi *v);

void vsip_cvalldestroy_f(vsip_cvview_f* v);

Description

This function destroys a vector view v and its underlying data block. After calling this function, both the vector view
and the data block are no longer valid.

Parameters

• vsip_d vview_p *v: Pointer to the vector view to be destroyed along with its data block.

Example

vsip_vview_f *vector_view;

// Assuming vector_view has been properly initialized

vsip_valldestroy_f(vector_view);

// Both the vector view and its data block are now invalid

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

50

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4 Matrix View Support Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

51

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.1 vsip_d mcreate_p - Create a Matrix View
typedef enum _vsip_memory_hint {

VSIP_MEM_NONE = 0,

VSIP_MEM_RDONLY = 1,

VSIP_MEM_CONST = 2,

VSIP_MEM_SHARED = 3,

VSIP_MEM_SHARED_RDONLY = 4,

VSIP_MEM_SHARED_CONST = 5

} vsip_memory_hint;

typedef enum {

VSIP_ROW = 0,

VSIP_COL = 1

} vsip_major;

vsip_mview_f* vsip_mcreate_f(vsip_length row_length, vsip_length col_length,

vsip_major major, vsip_mem_hint hint);

vsip_cmview_f* vsip_cmcreate_f(vsip_length row_length, vsip_length col_length,

vsip_major major, vsip_mem_hint hint);

Description

This function creates a new matrix view with the specified dimensions. The function allocates both a data block and a
matrix view, and binds them together.

Whether the matrix is stored in row- or column major order can be selected using the major argument.

Parameters

• vsip_length row_length: Number of rows in the matrix.

• vsip_length col_length: Number of columns in the matrix.

• vsip_major major: Whether the matrix is supposed to be row- or column major.

• vsip_mem_hint hint: Memory allocation hint that can be used to optimize memory access.

– VSIP_MEM_NONE - No memory hint

– VSIP_MEM_RDONLY - The memory is to be used read-only

– VSIP_MEM_CONST - The memory will hold constants

– VSIP_MEM_SHARED - The memory will be shared

– VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only

– VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

• On success, returns a pointer to the newly created matrix view.

• On error, returns NULL.

Example

vsip_mview_f *matrix;
vsip_length rows = 100;

vsip_length cols = 100;

// Create a 100x100 matrix initialized to 0.0

matrix = vsip_mcreate_f(rows, cols, VSIP_ROW, VSIP_MEM_NONE);

if (matrix == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

52

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

Notes

• The created matrix has contiguous memory layout with unit strides in both dimensions.

• This function is equivalent to calling vsip_blockcreate_f, then vsip_mbind_f, and finally filling the matrix
with the specified value.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

53

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.2 vsip_d mbind_p - Bind a Matrix View to a Block
void vsip_mbind_f(const vsip_block_f* block, vsip_offset offset,

vsip_stride col_stride, vsip_stride col_length,

vsip_length row_length, vsip_length row_length);

void vsip_cmbind_f(const vsip_cblock_f* block, vsip_offset offset,

vsip_stride col_stride, vsip_stride col_length,

vsip_length row_length, vsip_length row_length);

Description

This function binds a matrix view to a section of a data block, allowing access to the block’s data through the matrix
view interface. The binding specifies the location of the matrix within the block, the strides between elements, and the
dimensions of the matrix.

The matrix view becomes a "window" into the block, with the specified dimensions and strides. This allows for
efficient access to submatrices or non-contiguous sections of a larger data block without copying data.

Parameters

• const vsip_d block_p * block: Pointer to the block of data to bind to.

• vsip_offset offset: The offset (in elements) from the start of the block to the first element of the matrix (0,0
position).

• vsip_stride col_stride: The stride (in elements) between consecutive columns of the matrix.

• vsip_length col_length: The number of columns in the matrix view.

• vsip_stride row_stride: The stride (in elements) between consecutive rows of the matrix.

• vsip_length row_length: The number of rows in the matrix view.

Example

vsip_block_f *block;
vsip_mview_f matrix_view;

vsip_scalar_f *data;

vsip_length block_size = 1000;

// Allocate a block of data

block = vsip_blockcreate_f(block_size, VSIP_MEM_NONE);

// Populate block with data here

// Bind a 10x10 matrix view to the block starting at offset 0

// with contiguous memory layout (col_stride = 1, row_stride = 10)

matrix_view = vsip_mbind_f(block, 0, 1, 10, 10, 10);

Notes

• The block must be large enough to contain the matrix view with the specified strides.

• The strides determine how elements are accessed in memory:

– col_stride is the step size between columns (typically 1 for contiguous columns)

– row_stride is the step size between rows (typically equal to the number of columns for contiguous rows)

• Non-unit strides allow for accessing non-contiguous sections of the block.

• The matrix view does not own the data; the block must remain valid as long as the view is in use.

• This function is useful for creating views of submatrices or for implementing specialized matrix layouts.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

54

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.3 vsip_d mcloneview_p - Clone a Matrix View
vsip_mview_f* vsip_mcloneview_f(const vsip_mview_f* matrix);
vsip_cmview_f* vsip_cmcloneview_f(const vsip_cmview_f* matrix);

Description

This function creates a new matrix view that shares the same data block as the input matrix view but has its own
independent view parameters. The cloned view references the same underlying data but maintains its own metadata
(dimensions, strides, offset).

This is useful when you need multiple independent views of the same data, or when you want to create a view with
different parameters (like different submatrix boundaries) while sharing the same data storage.

Parameters

• const vsip_d mview_p * matrix: Pointer to the source matrix view to be cloned.

Return Value

• On success, returns a pointer to the newly created matrix view that shares data with the input view.

• On error, returns NULL.

Example

vsip_mview_f *original_matrix;
vsip_mview_f *cloned_matrix;

// Clone the matrix view

cloned_matrix = vsip_mcloneview_f(original_matrix);

if (cloned_matrix == NULL) {

// Handle error

}

Notes

• The cloned view shares the same underlying data block as the original view.

• Changes to the data through one view will be visible through all other views that share the same data block.

• The cloned view has the same dimensions, strides, and offset as the original view.

• This function is useful for creating multiple independent views of the same data without copying the actual data.

• To create a completely independent copy (including the data), use vsip_d mcopy_p _p to copy to a new matrix.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

55

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.4 vsip_d mget_p - Get Matrix Element
vsip_scalar_f vsip_mget_f(const vsip_mview_f *v, vsip_index i, vsip_index j);
vsip_cscalar_f vsip_cmget_f(const vsip_cmview_f *v, vsip_index i, vsip_index j);

Description

This function retrieves the value of a specific element from a matrix view. The element is identified by its row and
column indices (0-based).

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view.

• vsip_index i: Row index of the element to retrieve (0-based).

• vsip_index j: Column index of the element to retrieve (0-based).

Return Value

• Returns the value of the matrix element at position (i, j) as a vsip_d scalar_p .

Example

vsip_mview_f *matrix;
vsip_scalar_f value;

vsip_index i, j;

// Create and initialize a matrix

matrix = vsip_mcreate_f(5, 5, VSIP_ROW, VSIP_MEM_NONE);

// Fill the matrix with some values

for (i = 0; i < 5; i++) {

for (j = 0; j < 5; j++) {

vsip_mput_f(matrix, i, j, i * 5 + j + 1);

}

}

// Retrieve specific elements

value = vsip_mget_f(matrix, 0, 0); // Top-left corner

printf("Element at (0,0): %f\n", value);

value = vsip_mget_f(matrix, 2, 3); // Middle element

printf("Element at (2,3): %f\n", value);

value = vsip_mget_f(matrix, 4, 4); // Bottom-right corner

printf("Element at (4,4): %f\n", value);

Notes

• The function does not perform bounds checking and may return an error or undefined value if the indices are out
of range.

• For submatrix views, the indices are relative to the submatrix, not the parent matrix.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

56

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.5 vsip_d mput_p - Set Matrix Element
void vsip_mput_f(const vsip_mview_f *v, vsip_index i, vsip_index j, vsip_scalar_f vv);
void vsip_cmput_f(const vsip_cmview_f *v, vsip_index i, vsip_index j, vsip_cscalar_f vv);

Description

This function sets the value of a specific element in a matrix view. The element is identified by its row and column
indices (0-based).

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view.

• vsip_index i: Row index of the element to set (0-based).

• vsip_index j: Column index of the element to set (0-based).

• vsip_d scalar_p vv: The value to assign to the matrix element.

Example

vsip_mview_f *matrix;
vsip_index i, j;

// Create a matrix

matrix = vsip_mcreate_f(5, 5, VSIP_ROW, VSIP_MEM_NONE);

// Set specific elements

vsip_mput_f(matrix, 0, 0, 1.0f); // Top-left corner

vsip_mput_f(matrix, 2, 2, 5.0f); // Center element

vsip_mput_f(matrix, 4, 4, 9.0f); // Bottom-right corner

Notes

• The indices are 0-based (first row/column is index 0).

• The function does not perform bounds checking and may cause a memory access error.

• For submatrix views, the indices are relative to the submatrix, not the parent matrix.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

57

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.6 vsip_d msubview_p - Create a Submatrix View
vsip_mview_f* vsip_msubview_f(const vsip_mview_f* matrix,

vsip_index row_offset, vsip_index col_offset,

vsip_length row_length, vsip_length col_length);

vsip_cmview_f* vsip_cmsubview_f(const vsip_cmview_f* matrix,

vsip_index row_offset, vsip_index col_offset,

vsip_length row_length, vsip_length col_length);

Description

This function creates a new matrix view that represents a submatrix of an existing matrix view. The submatrix is
defined by its offset from the parent matrix and its dimensions. The new view shares the same underlying data block as
the parent matrix but provides access to only the specified subregion.

This operation is efficient as it doesn’t copy any data, but rather creates a new view that references a portion of the
original matrix’s data.

Parameters

• const vsip_mview_f* matrix: Pointer to the source matrix view.

• vsip_index row_offset: The row offset of the submatrix from the parent matrix (0-based).

• vsip_index col_offset: The column offset of the submatrix from the parent matrix (0-based).

• vsip_length row_length: The number of rows in the submatrix.

• vsip_length col_length: The number of columns in the submatrix.

Return Value

• On success, returns a pointer to the newly created submatrix view.

• On error (e.g., if the submatrix would extend beyond the parent matrix boundaries), returns NULL.

Example

vsip_mview_f *parent_matrix;
vsip_mview_f *submatrix;

// Create a parent matrix

parent_matrix = vsip_mcreate_f(100, 100, VSIP_ROW, VSIP_MEM_NONE);

// Create a 50x50 submatrix starting at row 25, column 25

submatrix = vsip_msubview_f(parent_matrix, 25, 25, 50, 50);

if (submatrix == NULL) {

// Handle error (e.g., invalid submatrix dimensions)

}

Notes

• The submatrix view shares the same underlying data block as the parent matrix.

• Modifications to the submatrix will affect the parent matrix and vice versa.

• The submatrix must be entirely contained within the parent matrix.

• The strides of the submatrix are inherited from the parent matrix.

• This function is useful for working with portions of a matrix without copying data.

• For non-contiguous submatrices or more complex views, consider using vsip_d mbind_p directly.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

58

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.7 vsip_d mtransview_p - Create a Transposed Matrix View
vsip_mview_f* vsip_mtransview_f(const vsip_mview_f* matrix);
vsip_cmview_f* vsip_cmtransview_f(const vsip_cmview_f* matrix);

Description

This function creates a new matrix view that represents the transpose of the input matrix. The transposed view shares
the same underlying data block as the original matrix but presents it with rows and columns swapped. This operation
is efficient as it doesn’t copy any data, but rather creates a new view with transposed dimensions and strides.

For an m×n input matrix, the transposed view will be an n×m matrix where the element at position (i, j) in the
transposed view corresponds to the element at position (j, i) in the original matrix.

Parameters

• const vsip_d mview_p * matrix: Pointer to the source matrix view to be transposed.

Return Value

• On success, returns a pointer to the newly created transposed matrix view.

• On error, returns NULL.

Example

vsip_mview_f *original_matrix;
vsip_mview_f *transposed_matrix;

vsip_length i, j;

// Create a 4x3 matrix

original_matrix = vsip_mcreate_f(4, 3, VSIP_ROW, VSIP_MEM_NONE);

// Fill the matrix with some values

for (i = 0; i < 4; i++) {

for (j = 0; j < 3; j++) {

vsip_mput_f(original_matrix, i, j, i * 3 + j + 1);

}

}

// Create a transposed view (3x4)

transposed_matrix = vsip_mtransview_f(original_matrix);

if (transposed_matrix == NULL) {

// Handle error

}

// Now transposed_matrix is a 3x4 view of the original 4x3 matrix data

// Accessing transposed_matrix[0][1] is equivalent to original_matrix[1][0]

Notes

• The transposed view shares the same underlying data block as the original matrix.

• Modifications to the transposed view will affect the original matrix and vice versa.

• The transposed view has swapped dimensions compared to the original matrix.

• The strides of the transposed view are adjusted to provide the transposed access pattern.

• This operation is efficient as it doesn’t copy any data, only creates a new view.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

59

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.8 vsip_d mrowview_p - Create a Row Vector View of a Matrix
vsip_vview_f* vsip_mrowview_f(const vsip_mview_f* matrix, vsip_index row_index);
vsip_cvview_f* vsip_cmrowview_f(const vsip_cmview_f* matrix, vsip_index row_index);

Description

This function creates a vector view that represents a single row of a matrix. The resulting vector view shares the same
underlying data block as the matrix but provides access to only the specified row. This operation is efficient as it doesn’t
copy any data, but rather creates a new view that references the row data.

The created vector view has a length equal to the number of columns in the source matrix. The vector view maintains
the same data type as the matrix elements.

Parameters

• const vsip_d mview_p * matrix: Pointer to the source matrix view.

• vsip_index row_index: The index of the row to extract (0-based).

Return Value

• On success, returns a pointer to the newly created vector view representing the specified row.

• On error (e.g., if the row index is out of bounds), returns NULL.

Example

vsip_mview_f *matrix;
vsip_vview_f *row_vector;

vsip_length i, j;

// Create a 5x10 matrix

matrix = vsip_mcreate_f(5, 10, VSIP_ROW, VSIP_MEM_NONE);

// Fill the matrix with some values

for (i = 0; i < 5; i++) {

for (j = 0; j < 10; j++) {

vsip_mput_f(matrix, i, j, i * 10 + j + 1);

}

}

// Get a vector view of the 3rd row (index 2)

row_vector = vsip_mrowview_f(matrix, 2);

if (row_vector == NULL) {

// Handle error

}

// Now row_vector represents the 3rd row of the matrix

// and has length equal to the number of columns (10)

Notes

• The row vector view shares the same underlying data block as the source matrix.

• Modifications to the row vector will affect the source matrix and vice versa.

• The row index must be within the valid range of the matrix (0 ≤ row_index < number of rows).

• The created vector view has a length equal to the number of columns in the source matrix.

• The vector view maintains the same stride as the row stride of the source matrix.

• This operation is efficient as it doesn’t copy any data, only creates a new view.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

60

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.9 vsip_d mcolview_p - Create a Column Vector View of a Matrix
vsip_vview_f* vsip_mcolview_f(const vsip_mview_f* matrix, vsip_index col_index);
vsip_cvview_f* vsip_cmcolview_f(const vsip_cmview_f* matrix, vsip_index col_index);

Description

This function creates a vector view that represents a single column of a matrix. The resulting vector view shares the
same underlying data block as the matrix but provides access to only the specified column. This operation is efficient as
it doesn’t copy any data, but rather creates a new view that references the row data.

The created vector view has a length equal to the number of rows in the source matrix. The vector view maintains
the same data type as the matrix elements.

Parameters

• const vsip_d mview_p * matrix: Pointer to the source matrix view.

• vsip_index col_index: The index of the column to extract (0-based).

Return Value

• On success, returns a pointer to the newly created vector view representing the specified column.

• On error (e.g., if the column index is out of bounds), returns NULL.

Example

vsip_mview_f *matrix;
vsip_vview_f *col_vector;

vsip_length i, j;

// Create a 5x10 matrix

matrix = vsip_mcreate_f(5, 10, VSIP_ROW, VSIP_MEM_NONE);

// Fill the matrix with some values

for (i = 0; i < 5; i++) {

for (j = 0; j < 10; j++) {

vsip_mput_f(matrix, i, j, i * 10 + j + 1);

}

}

// Get a vector view of the 3rd row (index 2)

col_vector = vsip_mcolview_f(matrix, 2);

if (col_vector == NULL) {

// Handle error

}

// Now col_vector represents the 3rd row of the matrix

// and has length equal to the number of rows (5)

Notes

• The column vector view shares the same underlying data block as the source matrix.

• Modifications to the column vector will affect the source matrix and vice versa.

• The column index must be within the valid range of the matrix (0 ≤ col_index < number of columns).

• The created vector view has a length equal to the number of rows in the source matrix.

• The vector view maintains the same stride as the column stride of the source matrix.

• This operation is efficient as it doesn’t copy any data, only creates a new view.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

61

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.10 vsip_d mdiagview_p - Create a Diagonal Vector View of a Matrix

vsip_vview_f* vsip_mdiagview_f(const vsip_mview_f* matrix, vsip_index diagonal);
vsip_cvview_f* vsip_cmdiagview_f(const vsip_cmview_f* matrix, vsip_index diagonal);

Description

This function creates a vector view that represents a diagonal of a matrix. The resulting vector view shares the same
underlying data block as the matrix but provides access to only the elements along the specified diagonal.

The diagonal is specified by an index where:

• Index 0 represents the main diagonal

• Positive indices represent super-diagonals (above the main diagonal)

• Negative indices represent sub-diagonals (below the main diagonal)

The length of the resulting vector depends on the diagonal index and the matrix dimensions. For a diagonal with
index d in an m×n matrix, the length of the vector is:

min(m−max(0,−d),n−max(0,d))

Parameters

• const vsip_d mview_p * matrix: Pointer to the source matrix view.

• vsip_index diagonal: The index of the diagonal to extract:

– 0: Main diagonal

– >0: Super-diagonal (above main diagonal)

– <0: Sub-diagonal (below main diagonal)

Return Value

• On success, returns a pointer to the newly created vector view representing the specified diagonal.

• On error (e.g., if the diagonal index is invalid for the matrix dimensions), returns NULL.

Example

vsip_mview_f *matrix;
vsip_vview_f *diag_vector;

vsip_length i, j;

// Create a 5x5 matrix

matrix = vsip_mcreate_f(5, 5, VSIP_ROW, VSIP_MEM_NONE);

// Fill the matrix with some values

for (i = 0; i < 5; i++) {

for (j = 0; j < 5; j++) {

vsip_mput_f(matrix, i, j, i * 5 + j + 1);

}

}

// Get a vector view of the main diagonal (index 0)

diag_vector = vsip_mdiagview_f(matrix, 0);

if (diag_vector == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

62

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

Notes

• The diagonal vector view shares the same underlying data block as the source matrix.

• Modifications to the diagonal vector will affect the source matrix and vice versa.

• The diagonal index must be valid for the matrix dimensions (i.e., the diagonal must exist in the matrix).

• The length of the resulting vector depends on the diagonal index and matrix dimensions.

• For the main diagonal (index 0) of an n×n matrix, the vector length is n.

• For super-diagonals (index > 0), the vector length is n− index.

• For sub-diagonals (index < 0), the vector length is n+ index.

• This operation is efficient as it doesn’t copy any data, only creates a new view.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

63

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.11 vsip_mrealview_p - Create a Real Part Matrix View
vsip_mview_f* vsip_mrealview_f(const vsip_cmview_f* cmatrix);

Description

This function creates a real matrix view that represents the real parts of a complex matrix. The resulting matrix view
shares the same underlying data block as the complex matrix but provides access to only the real components of each
complex element.

For a complex matrix A with elements ai j = xi j + i yi j, the real view matrix B will have elements bi j = xi j.

Parameters

• const vsip_cmview_p * cmatrix: Pointer to the source complex matrix view.

Return Value

• On success, returns a pointer to the newly created real matrix view representing the real parts.

• On error, returns NULL.

Example

vsip_cmview_f *complex_matrix;
vsip_mview_f *real_matrix;

vsip_length i, j;

// Create a 3x3 complex matrix

complex_matrix = vsip_cmcreate_f(3, 3, VSIP_ROW, VSIP_MEM_NONE);

// Fill with complex values

for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {

vsip_cmput_f(complex_matrix, i, j,

VSIP_CMPLX_F(i*3+j+1, (i*3+j+1)*0.1f));

}

}

// Create a real view of the complex matrix

real_matrix = vsip_mrealview_f(complex_matrix);

if (real_matrix == NULL) {

// Handle error

}

Notes

• The real matrix view shares the same underlying data block as the source complex matrix.

• Modifications to the real matrix view will affect the real parts of the complex matrix and vice versa.

• The real matrix view has the same dimensions as the source complex matrix.

• This operation is efficient as it doesn’t copy any data, only creates a new view.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

64

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.12 vsip_mimagview_p - Create an Imaginary Part Matrix View
vsip_mview_f* vsip_mimagview_f(const vsip_cmview_f* cmatrix);

Description

This function creates a real matrix view that represents the imaginary parts of a complex matrix. The resulting matrix
view shares the same underlying data block as the complex matrix but provides access to only the imaginary components
of each complex element.

For a complex matrix A with elements ai j = xi j + i yi j, the imaginary view matrix B will have elements bi j = yi j.

Parameters

• const vsip_cmview_p * cmatrix: Pointer to the source complex matrix view.

Return Value

• On success, returns a pointer to the newly created real matrix view representing the imaginary parts.

• On error, returns NULL.

Example

vsip_cmview_f *complex_matrix;
vsip_mview_f *imag_matrix;

vsip_length i, j;

// Create a 3x3 complex matrix

complex_matrix = vsip_cmcreate_f(3, 3, VSIP_ROW, VSIP_MEM_NONE);

// Fill with complex values

for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {

vsip_cmput_f(complex_matrix, i, j,

VSIP_CMPLX_F(i*3+j+1, (i*3+j+1)*0.1f));

}

}

// Create an imaginary view of the complex matrix

imag_matrix = vsip_mimagview_f(complex_matrix);

if (imag_matrix == NULL) {

// Handle error

}

Notes

• The imaginary matrix view shares the same underlying data block as the source complex matrix.

• Modifications to the imaginary matrix view will affect the imaginary parts of the complex matrix and vice versa.

• The imaginary matrix view has the same dimensions as the source complex matrix.

• This operation is efficient as it doesn’t copy any data, only creates a new view.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

65

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.13 vsip_d mgetattrib_p - Get Matrix Attributes
typedef struct {

vsip_length row_length; /* Number of rows */

vsip_length col_length; /* Number of columns */

vsip_offset offset; /* Offset into the block */

vsip_stride row_stride; /* Stride between rows */

vsip_stride col_stride; /* Stride between columns */

vsip_block_f* block; /* Pointer to the data block */

} vsip_mattr_f;

/* same for the other dataypes with the respective vsip_dblock_p */

void vsip_mgetattrib_f(const vsip_mview_f* v, vsip_mattr_f* attr);

void vsip_cmgetattrib_f(const vsip_cmview_f* v, vsip_cmattr_f* attr);

Description

This function retrieves all attributes of a matrix view and stores them in a vsip_d mattr_p structure. The attribute
structure contains complete information about the matrix view’s dimensions, memory layout, and binding to its data
block.

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view.

• vsip_d mattr_p * attr: Pointer to the attribute structure where the matrix attributes will be stored.

Example

vsip_mview_f *matrix;
vsip_mattr_f attr;

// Create a matrix

matrix = vsip_mcreate_f(100, 100, VSIP_ROW, VSIP_MEM_NONE);

// Get all matrix attributes

vsip_mgetattrib_f(matrix, &attr);

printf("Matrix attributes:\n");

printf(" Dimensions: %lu x %lu\n", attr.row_length, attr.col_length);

printf(" Memory offset: %ld\n", attr.offset);

printf(" Row stride: %ld\n", attr.row_stride);

printf(" Column stride: %ld\n", attr.col_stride);

printf(" Block pointer: %p\n", (void*)attr.block);

// Create a submatrix view and examine its attributes

vsip_mview_f *submatrix = vsip_msubview_f(matrix, 10, 10, 50, 50);

vsip_mgetattrib_f(submatrix, &attr);

printf("\nSubmatrix attributes:\n");

printf(" Dimensions: %lu x %lu\n", attr.row_length, attr.col_length);

printf(" Memory offset: %ld\n", attr.offset);

// Create a transposed view and examine its attributes

vsip_mview_f *transposed = vsip_mtransview_f(matrix);

vsip_mgetattrib_f(transposed, &attr);

printf("\nTransposed matrix attributes:\n");

printf(" Dimensions: %lu x %lu\n", attr.row_length, attr.col_length);

printf(" Row stride: %ld\n", attr.row_stride);

printf(" Column stride: %ld\n", attr.col_stride);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

66

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

Notes

• The vsip_mattr_f structure contains all information needed to completely describe a matrix view.

• The block field points to the underlying data block that stores the matrix elements.

• For row-major matrices, col_stride is typically 1 and row_stride equals the number of columns.

• For column-major matrices, row_stride is typically 1 and col_stride equals the number of rows.

• For transposed views, the row and column strides are swapped compared to the original matrix.

• The offset indicates how many elements from the start of the block the matrix begins at.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

67

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.14 vsip_d mputattrib_p - Set Matrix Attributes
typedef struct {

vsip_length row_length; /* Number of rows */

vsip_length col_length; /* Number of columns */

vsip_offset offset; /* Offset into the block */

vsip_stride row_stride; /* Stride between rows */

vsip_stride col_stride; /* Stride between columns */

vsip_block_f* block; /* Pointer to the data block */

} vsip_mattr_f;

/* same for the other dataypes with the respective vsip_dblock_p */

vsip_mview_f* vsip_mputattrib_f(vsip_mview_f* v, const vsip_mattr_f* attr);

vsip_cmview_f* vsip_cmputattrib_f(vsip_cmview_f* v, const vsip_cmattr_f* attr);

Description

This function modifies the attributes of an existing matrix view according to the parameters specified in a vsip_d mattr_p
structure. It allows you to change the view’s dimensions, memory layout, and binding to its data block in a single oper-
ation.

Parameters

• vsip_d mview_p * v: Pointer to the matrix view to be modified.

• const vsip_d mattr_p * attr: Pointer to the attribute structure containing the new attributes.

Return Value

• On success, returns a pointer to the modified matrix view.

• On error, returns NULL.

Example

vsip_mview_f *matrix;
vsip_mattr_f attr;

vsip_block_f *new_block;

// Create a matrix

matrix = vsip_mcreate_f(100, 100, VSIP_ROW, VSIP_MEM_NONE);

// Get current attributes

vsip_mgetattrib_f(matrix, &attr);

printf("Original dimensions: %lu x %lu\n", attr.row_length, attr.col_length);

// Modify the view to show only a submatrix

attr.row_length = 50; // Show only first 50 rows

attr.col_length = 50; // Show only first 50 columns

attr.offset = 0; // Start from beginning of block

// Keep the same strides and block

if (vsip_mputattrib_f(matrix, &attr) == NULL) {

// Handle error

}

Notes

• This function completely reconfigures the matrix view according to the provided attributes.

• The new configuration must be valid (e.g., the block must be large enough to contain the view with the specified
offset and strides).

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

68

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

• The view’s dimensions can be changed, but must be compatible with the block size and strides.

• The offset must be valid for the specified block.

• Strides must be positive and compatible with the block size and view dimensions.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

69

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.15 vsip_d mgetblock_p - Get the Data Block from a Matrix View
vsip_block_f* vsip_mgetblock_f(const vsip_mview_f *v);
vsip_cblock_f* vsip_cmgetblock_f(const vsip_cmview_f *v);

Description

This function returns a pointer to the data block associated with a matrix view. The data block contains the actual
storage for the matrix elements.

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view.

Return Value

• Returns a pointer to the vsip_d block_p associated with the matrix view.

Notes

• Multiple matrix views can share the same data block.

• The block should not be destroyed directly if it’s still being used by any matrix views.

• This function is useful for:

– Creating additional views of the same data with different parameters

– Checking if two matrices share the same underlying storage

– Performing operations that require access to the raw data

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

70

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.16 vsip_d mgetcollength_p - Get Number of Columns in a Matrix View
vsip_length vsip_mgetcollength_f(const vsip_mview_f *v);
vsip_length vsip_cmgetcollength_f(const vsip_cmview_f *v);

Description

This function returns the number of columns in a matrix view. The number of columns represents the size of the matrix
in its second dimension (width) and determines how many elements are in each row of the matrix.

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view.

Return Value

• Returns the number of columns in the matrix view as a vsip_length value.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

71

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.17 vsip_d mputcollength_p - Set Number of Columns in a Matrix View
vsip_mview_f* vsip_mputcollength_f(const vsip_mview_f *v, vsip_length len);
vsip_cmview_f* vsip_cmputcollength_f(const vsip_cmview_f *v, vsip_length len);

Description

This function modifies the number of columns in an existing matrix view. It allows you to change the width of the matrix
view while keeping all other attributes (row count, block, offset, and strides) the same.

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view to be modified.

• vsip_length len: The new number of columns for the matrix view.

Return Value

• Returns a pointer to the modified matrix view.

Notes

• The new column length must be compatible with the matrix’s block and strides:

– The product of (new column length - 1) and column stride must not exceed the block size minus the offset

• Changing the column length affects how many elements are accessible in each row of the matrix view.

• For row-major matrices, this operation is generally safe as long as the new length doesn’t exceed the block bound-
aries.

• For column-major matrices or matrices with non-unit column strides, be cautious as changing the column length
might make the view invalid if it extends beyond the block boundaries.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

72

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.18 vsip_d mgetrowlength_p - Get Number of Rows in a Matrix View
vsip_length vsip_mgetrowlength_f(const vsip_mview_f *v);
vsip_length vsip_cmgetrowlength_f(const vsip_cmview_f *v);

Description

This function returns the number of rows in a matrix view. The number of rows represents the size of the matrix in its
first dimension (height) and determines how many elements are in each column of the matrix.

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view.

Return Value

• Returns the number of rows in the matrix view as a vsip_length value.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

73

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.19 vsip_d mputrowlength_p - Set Number of Rows in a Matrix View
vsip_mview_f* vsip_mputrowlength_f(const vsip_mview_f *v, vsip_length len);
vsip_cmview_f* vsip_cmputrowlength_f(const vsip_cmview_f *v, vsip_length len);

Description

This function modifies the number of rows in an existing matrix view. It allows you to change the height of the matrix
view while keeping all other attributes (column count, block, offset, and strides) the same.

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view to be modified.

• vsip_length len: The new number of rows for the matrix view.

Return Value

• Returns a pointer to the modified matrix view.

Notes

• The new row length must be compatible with the matrix’s block and strides:

– The product of (new row length - 1) and row stride must not exceed the block size minus the offset

• Changing the row length affects how many elements are accessible in each column of the matrix view.

• For column-major matrices, this operation is generally safe as long as the new length doesn’t exceed the block
boundaries.

• For row-major matrices or matrices with non-unit row strides, be cautious as changing the row length might make
the view invalid if it extends beyond the block boundaries.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

74

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.20 vsip_d mgetcolstride_p - Get Column Stride of a Matrix View
vsip_stride vsip_mgetcolstride_f(const vsip_mview_f *v);
vsip_stride vsip_cmgetcolstride_f(const vsip_cmview_f *v);

Description

This function returns the column stride of a matrix view, which represents the number of elements to skip in memory
when moving from one column to the next within a row.

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view.

Return Value

• Returns the column stride as a vsip_stride value.

Example

vsip_mview_f *matrix;
vsip_stride col_stride;

// Create a standard row-major matrix

matrix = vsip_mcreate_f(100, 100, VSIP_ROW, VSIP_MEM_NONE);

col_stride = vsip_mgetcolstride_f(matrix);

printf("Standard matrix column stride: %ld\n", col_stride); // Typically 1

Notes

• For row-major matrices, the column stride is typically 1 (contiguous elements along rows).

• For column-major matrices, the column stride equals the number of rows.

• For transposed views, the column stride of the transposed view equals the row stride of the original matrix.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

75

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.21 vsip_d mputcolstride_p - Set Column Stride of a Matrix View
vsip_mview_f* vsip_mputcolstride_f(const vsip_mview_f *v, vsip_stride stride);
vsip_cmview_f* vsip_cmputcolstride_f(const vsip_cmview_f *v, vsip_stride stride);

Description

This function modifies the column stride of an existing matrix view. The column stride determines how elements are
laid out in memory along the columns of the matrix (how many elements to skip when moving from one column to the
next within a row).

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view to be modified.

• vsip_stride stride: The new column stride value.

Return Value

• Returns a pointer to the modified matrix view.

Example

vsip_mview_f *matrix;
vsip_stride original_stride, new_stride;

// Create a matrix

matrix = vsip_mcreate_f(100, 100, VSIP_ROW, VSIP_MEM_NONE);

original_stride = vsip_mgetcolstride_f(matrix);

printf("Original column stride: %ld\n", original_stride); // Typically 1

// Change to stride of 2 (every other element in rows)

if (vsip_mputcolstride_f(matrix, 2) == NULL) {

// Handle error

}

printf("New column stride: %ld\n", vsip_mgetcolstride_f(matrix)); // Output: 2

Notes

• The new stride must be compatible with the matrix dimensions and block size:

– (column length - 1) * new stride + offset must be ≤ block size

• Changing the column stride affects how elements are accessed when moving along rows.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

76

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.22 vsip_d mgetrowstride_p - Get Row Stride of a Matrix View
vsip_stride vsip_mgetrowstride_f(const vsip_mview_f *v);
vsip_stride vsip_cmgetrowstride_f(const vsip_cmview_f *v);

Description

This function returns the row stride of a matrix view, which represents the number of elements to skip in memory when
moving from one row to the next within a column.

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view.

Return Value

• Returns the row stride as a vsip_stride value.

Example

vsip_mview_f *matrix;
vsip_stride row_stride;

// Create a standard row-major matrix

matrix = vsip_mcreate_f(100, 100, VSIP_ROW, VSIP_MEM_NONE);

row_stride = vsip_mgetrowstride_f(matrix);

printf("Standard matrix row stride: %ld\n", row_stride); // Typically 1

Notes

• For column-major matrices, the row stride is typically 1 (contiguous elements along columns).

• For row-major matrices, the row stride equals the number of columns.

• For transposed views, the row stride of the transposed view equals the column stride of the original matrix.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

77

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.23 vsip_d mputrowstride_p - Set Row Stride of a Matrix View
vsip_mview_f* vsip_mputrowstride_f(const vsip_mview_f *v, vsip_stride stride);
vsip_cmview_f* vsip_cmputrowstride_f(const vsip_cmview_f *v, vsip_stride stride);

Description

This function modifies the row stride of an existing matrix view. The row stride determines how elements are laid out
in memory along the rows of the matrix (how many elements to skip when moving from one row to the next within a
column).

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view to be modified.

• vsip_stride stride: The new row stride value.

Return Value

• Returns a pointer to the modified matrix view.

Example

vsip_mview_f *matrix;
vsip_stride original_stride, new_stride;

// Create a matrix

matrix = vsip_mcreate_f(100, 100, VSIP_ROW, VSIP_MEM_NONE);

original_stride = vsip_mgetrowstride_f(matrix);

printf("Original row stride: %ld\n", original_stride); // Typically 1

// Change to stride of 2 (every other element in rows)

if (vsip_mputrowstride_f(matrix, 2) == NULL) {

// Handle error

}

printf("New row stride: %ld\n", vsip_mgetcolstride_f(matrix)); // Output: 2

Notes

• The new stride must be compatible with the matrix dimensions and block size:

– (row length - 1) * new stride + offset must be ≤ block size

• Changing the row stride affects how elements are accessed when moving along columns.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

78

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.24 vsip_d mgetoffset_p - Get Matrix View Offset
vsip_offset vsip_mgetoffset_f(const vsip_mview_f *v);
vsip_offset vsip_cmgetoffset_f(const vsip_cmview_f *v);

Description

This function returns the offset of a matrix view within its associated data block. The offset represents the number of
elements from the start of the block to the first element (0,0) of the matrix view.

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view.

Return Value

• Returns the offset in elements from the start of the block to the first element of the matrix view.

Notes

• For matrices created with vsip_mcreate_f, the offset is typically 0.

• The offset, combined with the strides, completely defines where the matrix view is located within its block.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

79

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.25 vsip_d mputoffset_p - Set Matrix View Offset
vsip_mview_f* vsip_mputoffset_f(const vsip_mview_f *v, vsip_offset off);
vsip_cmview_f* vsip_cmputoffset_f(const vsip_cmview_f *v, vsip_offset off);

Description

This function modifies the offset of an existing matrix view. The offset determines where the matrix view begins within
its associated data block, measured in elements from the start of the block.

Parameters

• const vsip_d mview_p * v: Pointer to the matrix view to be modified.

• vsip_offset off: The new offset in elements from the start of the block.

Return Value

• Returns a pointer to the modified matrix view.

Notes

• The new offset must be such that the entire view fits within the block boundaries.

• The condition for a valid offset is:

offset+row_length×row_stride+col_length×col_stride< block_size

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

80

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.26 vsip_d mdestroy_p - Destroy a Matrix View
vsip_block_f* vsip_mdestroy_f(vsip_mview_f *matrix);
vsip_cblock_f* vsip_cmdestroy_f(vsip_cmview_f *matrix);

Description

This function destroys a matrix view and returns its associated data block.

Parameters

• vsip_d mview_p * matrix: Pointer to the matrix view to be destroyed.

Example

vsip_mview_f *matrix;

// Create a matrix

matrix = vsip_mcreate_f(100, 100, VSIP_ROW, VSIP_MEM_NONE);

// Use the matrix...

// ...

// Destroy the matrix when no longer needed

vsip_mdestroy_f(matrix);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

81

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.27 vsip_d malldestroy_p - Destroy Matrix View and its Data Block
void vsip_malldestroy_f(vsip_mview_f *matrix);
void vsip_cmalldestroy_f(vsip_cmview_f *matrix);

Description

This function destroys a matrix view and its associated data block. If the view is from a derived block such as a complex
block, the complex block must be destroyed in a separate manner to free up the memory.

Parameters

• vsip_d mview_p * matrix: Pointer to a matrix view object to be destroyed.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

82

Chapter 2

Scalar Functions

83

2.1. REAL SCALAR FUNCTIONS CHAPTER 2. SCALAR FUNCTIONS

2.1 Real Scalar Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

84

CHAPTER 2. SCALAR FUNCTIONS 2.2. COMPLEX SCALAR FUNCTIONS

2.2 Complex Scalar Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

85

2.2. COMPLEX SCALAR FUNCTIONS CHAPTER 2. SCALAR FUNCTIONS

2.2.1 vsip_real_p - Complex Real part
vsip_scalar_f vsip_real_f(vsip_cscalar_f x);

Description

This function extracts the real part of the complex scalar x.

Parameters

• vsip_cscalar_f x: The complex scalar from which to extract the real part.

Return Value

• The real part of the complex scalar.

Example

vsip_cscalar_f complex_value = {1.0, 2.0};
vsip_scalar_f real_part;

real_part = vsip_real_f(complex_value);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

86

CHAPTER 2. SCALAR FUNCTIONS 2.2. COMPLEX SCALAR FUNCTIONS

2.2.2 vsip_imag_p - Complex Imaginary part
vsip_scalar_f vsip_imag_f(vsip_cscalar_f x);

Description

This function extracts the imaginary part of the complex scalar x.

Parameters

• vsip_cscalar_f x: The complex scalar from which to extract the imaginary part.

Return Value

• The imaginary part of the complex scalar.

Example

vsip_cscalar_f complex_value = {1.0, 2.0};
vsip_scalar_f imag_part;

imag_part = vsip_imag_f(complex_value);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

87

2.2. COMPLEX SCALAR FUNCTIONS CHAPTER 2. SCALAR FUNCTIONS

2.2.3 vsip_cmplx_p - Create complex number
vsip_cscalar_f vsip_cmplx_f(vsip_scalar_f r, vsip_scalar_f i);

Description

This function creates a complex scalar from the real part r and the imaginary part i.

Parameters

• vsip_scalar_f r: The real part of the complex scalar.

• vsip_scalar_f i: The imaginary part of the complex scalar.

Return Value

• The created complex scalar.

Example

vsip_scalar_f real_part = 1.0;
vsip_scalar_f imag_part = 2.0;

vsip_cscalar_f complex_value;

complex_value = vsip_cmplx_f(real_part, imag_part);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

88

CHAPTER 2. SCALAR FUNCTIONS 2.2. COMPLEX SCALAR FUNCTIONS

2.2.4 vsip_CMPLX_p - Create a Complex Scalar and Store in a Pointer
void vsip_CMPLX_f(vsip_scalar_f a, vsip_scalar_f b, vsip_cscalar_f *r);

Description

This function creates a complex scalar from the real part a and the imaginary part b and stores the result in the complex
scalar pointed to by r.

Parameters

• vsip_scalar_f a: The real part of the complex scalar.

• vsip_scalar_f b: The imaginary part of the complex scalar.

• vsip_cscalar_f* r: Pointer to the complex scalar where the result will be stored.

Example

vsip_scalar_f real_part = 1.0;
vsip_scalar_f imag_part = 2.0;

vsip_cscalar_f complex_value;

vsip_CMPLX_f(real_part, imag_part, &complex_value);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

89

2.3. INDEX SCALAR FUNCTIONS CHAPTER 2. SCALAR FUNCTIONS

2.3 Index Scalar Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

90

Chapter 3

Random Number Generation

91

3.1. RANDOM NUMBER FUNCTIONS CHAPTER 3. RANDOM NUMBER GENERATION

3.1 Random Number Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

92

CHAPTER 3. RANDOM NUMBER GENERATION 3.1. RANDOM NUMBER FUNCTIONS

3.1.1 vsip_randcreate - Create a Random Number Generator State
vsip_randstate *vsip_randcreate(vsip_index seed, vsip_index numprocs,

vsip_index id, vsip_rng portable);

Description

This function creates and initializes a random number generator state. The function allows for parallel random number
generation by specifying the number of processes (numprocs) and the process ID (id). The portable parameter specifies
the type of random number generator to use.

Parameters

• vsip_index seed: The seed value for the random number generator.

• vsip_index numprocs: The number of parallel processes.

• vsip_index id: The ID of the current process (must be in the range [0, numprocs-1]).

• vsip_rng portable: The type of random number generator to use (e.g., VSIP_PRNG for portable random number
generation).

Return Value

• On success, a pointer to the newly created random number generator state is returned.

• On error, NULL is returned.

Example

vsip_randstate *rand_state;
vsip_index seed = 42;

vsip_index numprocs = 1;

vsip_index id = 0;

// Create a random number generator state

rand_state = vsip_randcreate(seed, numprocs, id, VSIP_PRNG);

if (rand_state == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

93

3.1. RANDOM NUMBER FUNCTIONS CHAPTER 3. RANDOM NUMBER GENERATION

3.1.2 vsip_randdestroy - Destroy a Random Number Generator State
int vsip_randdestroy(vsip_randstate *state);

Description

This function destroys the random number generator state state and frees all associated resources. After calling this
function, the random number generator state should no longer be used.

Parameters

• vsip_randstate* state: Pointer to the random number generator state to be destroyed.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error.

Example

vsip_randstate *rand_state;
int result;

// Assuming rand_state has been properly initialized

result = vsip_randdestroy(rand_state);

if (result != 0) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

94

CHAPTER 3. RANDOM NUMBER GENERATION 3.1. RANDOM NUMBER FUNCTIONS

3.1.3 vsip_d vrandu_p - Generate Uniformly Distributed Random Numbers in a Vector
View

void vsip_vrandu_f(vsip_randstate *state, const vsip_vview_f *r);
void vsip_cvrandu_f(vsip_randstate *state, const vsip_cvview_f *r);

Description

This function fills the vector view r with uniformly distributed random numbers in the range [0, 1) using the random
number generator state state.

Parameters

• vsip_randstate* state: Pointer to the random number generator state.

• const vsip_d vview_p * r: Pointer to the destination vector view where the random numbers will be stored.

Example

vsip_randstate *rand_state;
vsip_vview_f *random_vector;

// Initialize random number generator state

rand_state = vsip_randcreate(42, 0, 1, VSIP_PRNG);

// Assuming random_vector has been properly initialized

vsip_vrandu_f(rand_state, random_vector);

// Clean up

vsip_randdestroy(rand_state);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

95

3.1. RANDOM NUMBER FUNCTIONS CHAPTER 3. RANDOM NUMBER GENERATION

3.1.4 vsip_d vrandn_p - Fill Vector with Normally Distributed Random Numbers
void vsip_vrandn_f(vsip_randstate *state, const vsip_vview_f *r);
void vsip_cvrandn_f(vsip_randstate *state, const vsip_cvview_f *r);

Description

This function fills a vector with random numbers drawn from a standard normal distribution (mean = 0, standard
deviation = 1) using the specified random number generator state. The random numbers are generated according to the
normal (Gaussian) probability density function:

f (x)= 1p
2π

e−
x2
2

Parameters

• vsip_randstate* state: Pointer to the random number generator state.

• const vsip_d vview_p * r: Pointer to the output vector that will be filled with normally distributed random
numbers.

Example

vsip_randstate *rand_state;
vsip_vview_f *random_vector;

// Initialize random number generator state

rand_state = vsip_randcreate(42, 0, 1, VSIP_PRNG);

// Assuming random_vector has been properly initialized

vsip_vrandn_f(rand_state, random_vector);

// Clean up

vsip_randdestroy(rand_state);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

96

Chapter 4

Vector and Elementwise Operations

97

4.1. COPY FUNCTIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.1 Copy Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

98

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.1. COPY FUNCTIONS

4.1.1 vsip_d vcopy_p _p - Copy Vector Views
void vsip_vcopy_f_f(const vsip_vview_f* a, const vsip_vview_f* r);
void vsip_vcopy_i_i(const vsip_vview_i* a, const vsip_vview_i* r);

void vsip_vcopy_i_f(const vsip_vview_i* a, const vsip_vview_f* r);

void vsip_vcopy_f_i(const vsip_vview_f* a, const vsip_vview_i* r);

void vsip_cvcopy_f_f(const vsip_cvview_f* a, const vsip_cvview_f* r);

void vsip_vcopy_vi_vi(const vsip_vview_vi* a, const vsip_vview_vi* r);

void vsip_vcopy_i_vi(const vsip_vview_i* a, const vsip_vview_vi* r);

void vsip_vcopy_vi_i(const vsip_vview_vi* a, const vsip_vview_i* r);

void vsip_vcopy_mi_mi(const vsip_vview_mi* a, const vsip_vview_mi* r);

void vsip_vcopy_bl_bl(const vsip_vview_bl* a, const vsip_vview_bl* r);

void vsip_vcopy_bl_f(const vsip_vview_bl* a, const vsip_vview_f* r);

void vsip_vcopy_f_bl(const vsip_vview_f* a, const vsip_vview_bl* r);

Description

These functions copy the contents of one vector view to another. The source and destination vector views can be of
different types (float or integer), and the functions handle the necessary type conversions.

Parameters

• const vsip_d vview_p * a: Pointer to the source vector view.

• const vsip_d vview_p * r: Pointer to the destination vector view.

Functions

• vsip_vcopy_f_f: Copies from a float vector view to another float vector view.

• vsip_vcopy_i_i: Copies from an integer vector view to another integer vector view.

• vsip_vcopy_i_f: Copies from an integer vector view to a float vector view.

• vsip_vcopy_f_i: Copies from a float vector view to an integer vector view.

• vsip_cvcopy_f_f: Copies from a complex float vector view to another complex float vector view.

• vsip_vcopy_vi_vi: Copies from a vector index vector view to another vector index vector view.

• vsip_vcopy_vi_i: Copies from a vector index vector view to integer vector view.

• vsip_vcopy_i_vi: Copies from a integer vector view to a vector index vector view.

• vsip_vcopy_mi_mi: Copies from a matrix index vector view to another matrix index vector view.

• vsip_vcopy_bl_bl: Copies from a boolean vector view to another boolean vector view.

• vsip_vcopy_bl_f: Copies from a boolean vector view to a real vector view.

• vsip_vcopy_f_bl: Copies from a real vector view to a boolean vector view.

Example

vsip_vview_f *src_float_view;
vsip_vview_f *dst_float_view;

// Assuming all views have been properly initialized

// Copy from float vector view to float vector view

vsip_vcopy_f_f(src_float_view, dst_float_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

99

4.1. COPY FUNCTIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.1.2 vsip_d mcopy_p - Copy Matrix Views
void vsip_mcopy_f_f(const vsip_mview_f* A, const vsip_mview_f* B);
void vsip_cmcopy_f_f(const vsip_cmview_f* A, const vsip_cmview_f* B);

Description

These functions copy the contents of one matrix view to another, with optional type conversion. The functions handle
both real and complex matrices of various precision levels:

• vsip_mcopy_f_f: Copy from float matrix to float matrix

• vsip_cmcopy_f_f: Copy from complex float matrix to complex float matrix

Parameters

• const vsip_d mview_p * A: Pointer to the source matrix view

• const vsip_d mview_p * B: Pointer to the destination matrix view

Example

vsip_mview_f *src_matrix_f;
vsip_mview_f *dst_matrix_f;

// Copy float matrix to float matrix

vsip_mcopy_f_f(src_matrix_f, dst_matrix_f);

Notes

• The source and destination matrices must have the same dimensions.

• For type conversion functions, appropriate rounding or truncation is applied when converting to integer types.

• When converting from higher precision to lower precision (e.g., double to float), values may be truncated or
rounded.

• The matrices can be views of larger matrices or blocks, allowing for copying of submatrices.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

100

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.2. VECTOR GENERAL

4.2 Vector General

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

101

4.2. VECTOR GENERAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.2.1 vsip_d vmul_p - Element-wise Multiplication of Two Vector Views
void vsip_vmul_f(const vsip_vview_f* a, const vsip_vview_f* b, const vsip_vview_f* r);
void vsip_cvmul_f(const vsip_cvview_f* a, const vsip_cvview_f* b, const vsip_cvview_f* r);

Description

This function performs element-wise multiplication of the vector views a and b and stores the result in the vector view
r.

Parameters

• const vsip_d vview_p * a: Pointer to the first source vector view.

• const vsip_d vview_p * b: Pointer to the second source vector view.

• const vsip_d vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;

vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized

vsip_vmul_f(vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

102

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.2. VECTOR GENERAL

4.2.2 vsip_vdiv_p - Element-wise Division of Two Vector Views
void vsip_vdiv_f(const vsip_vview_f* a, const vsip_vview_f* b, const vsip_vview_f* r);

Description

This function performs element-wise division of the vector view a by the vector view b and stores the result in the vector
view r.

Parameters

• const vsip_vview_p * a: Pointer to the numerator vector view.

• const vsip_vview_p * b: Pointer to the denominator vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;

vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized

vsip_vdiv_f(vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

103

4.2. VECTOR GENERAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.2.3 vsip_d vadd_p - Element-wise Addition of Two Vector Views
void vsip_vadd_f(const vsip_vview_f* a, const vsip_vview_f* b, const vsip_vview_f* r);
void vsip_cvadd_f(const vsip_cvview_f* a, const vsip_cvview_f* b, const vsip_cvview_f* r);

Description

This function performs element-wise addition of the vector views a and b and stores the result in the vector view r.

Parameters

• const vsip_d vview_p * a: Pointer to the first source vector view.

• const vsip_d vview_p * b: Pointer to the second source vector view.

• const vsip_d vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;

vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized

vsip_vadd_f(vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

104

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.2. VECTOR GENERAL

4.2.4 vsip_d vsub_p - Element-wise Subtraction of Two Vector Views
void vsip_vsub_f(const vsip_vview_f* a, const vsip_vview_f* b, constvsip_vview_f* r);
void vsip_cvsub_f(const vsip_cvview_f* a, const vsip_cvview_f* b, const vsip_cvview_f* r);

Description

This function performs element-wise subtraction of the vector view b from the vector view a and stores the result in the
vector view r.

Parameters

• const vsip_d vview_p * a: Pointer to the minuend vector view.

• const vsip_d vview_p * b: Pointer to the subtrahend vector view.

• const vsip_d vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;

vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized

vsip_vsub_f(vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

105

4.2. VECTOR GENERAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.2.5 vsip_d svmul_p - Multiply a Scalar by a Vector View
void vsip_svmul_f(vsip_scalar_f alpha, const vsip_vview_f* b, const vsip_vview_f* r);
void vsip_csvmul_f(vsip_cscalar_f alpha, const vsip_cvview_f* b, const vsip_cvview_f* r);

Description

This function multiplies each element of the vector view b by the scalar alpha and stores the result in the vector view r.

Parameters

• vsip_d scalar_p alpha: The scalar value to multiply by.

• const vsip_d vview_p * b: Pointer to the source vector view.

• const vsip_d vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

vsip_scalar_f scalar = 2.0;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_svmul_f(scalar, src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

106

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.2. VECTOR GENERAL

4.2.6 vsip_svdiv_p - Divide a Scalar by a Vector View
void vsip_svdiv_f(vsip_scalar_f alpha, const vsip_vview_f* b, const vsip_vview_f* r);

Description

This function divides the scalar alpha by each element of the vector view b and stores the result in the vector view r.

Parameters

• vsip_scalar_p alpha: The scalar value to divide.

• const vsip_vview_p * b: Pointer to the source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

vsip_scalar_f scalar = 2.0;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_svdiv_f(scalar, src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

107

4.2. VECTOR GENERAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.2.7 vsip_svadd_p - Add a Scalar to a Vector View
void vsip_svadd_f(vsip_scalar_f alpha, const vsip_vview_f* b, const vsip_vview_f* r);

Description

This function adds the scalar alpha to each element of the vector view b and stores the result in the vector view r.

Parameters

• vsip_scalar_p alpha: The scalar value to add.

• const vsip_vview_p * b: Pointer to the source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

vsip_scalar_f scalar = 2.0;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_svadd_f(scalar, src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

108

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.2. VECTOR GENERAL

4.2.8 vsip_d vneg_p - Negate Elements of a Vector View
void vsip_vneg_f(const vsip_vview_f* a, const vsip_vview_f* r);
void vsip_cvneg_f(const vsip_cvview_f* a, const vsip_cvview_f* r);

Description

This function negates each element of the vector view a and stores the result in the vector view r.

r i =−ai

Parameters

• const vsip_d vview_p * a: Pointer to the source vector view.

• const vsip_d vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_vneg_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

109

4.2. VECTOR GENERAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.2.9 vsip_d vmag_p - Compute Magnitude of Elements of a Vector View
void vsip_vmag_f(const vsip_vview_f* a, const vsip_vview_f* r);
void vsip_cvmag_f(const vsip_cvview_f* a, const vsip_vview_f* r);

Description

This function computes the magnitude (absolute value) of each element of the vector view a and stores the result in the
vector view r.

r i = |ai|

Parameters

• const vsip_d vview_p * a: Pointer to the source vector view.

• const vsip_d vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_vmag_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

110

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3 Vector Real

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

111

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.1 vsip_vminval_p - Find the Minimum Value in a Vector View
vsip_scalar_f vsip_vminval_f(const vsip_vview_f* a, vsip_index* j);

Description

This function finds the minimum value in the vector view a and returns it. The index of the minimum value is stored in
the variable pointed to by j.

Parameters

• const vsip_vview_p * a: Pointer to the vector view.

• vsip_index* j: Pointer to a variable where the index of the minimum value will be stored.

Return Value

• The minimum value in the vector view.

Example

vsip_vview_f *vector_view;
vsip_index index;

vsip_scalar_f min_value;

// Assuming vector_view has been properly initialized

min_value = vsip_vminval_f(vector_view, &index);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

112

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.2 vsip_vmaxval_p - Find the Maximum Value in a Vector View
vsip_scalar_f vsip_vmaxval_f(const vsip_vview_f* a, vsip_index* j);

Description

This function finds the maximum value in the vector view a and returns it. The index of the maximum value is stored
in the variable pointed to by j.

Parameters

• const vsip_vview_p * a: Pointer to the vector view.

• vsip_index* j: Pointer to a variable where the index of the maximum value will be stored.

Return Value

• The maximum value in the vector view.

Example

vsip_vview_f *vector_view;
vsip_index index;

vsip_scalar_f max_value;

// Assuming vector_view has been properly initialized

max_value = vsip_vmaxval_f(vector_view, &index);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

113

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.3 vsip_vsumval_p - Compute the Sum of Elements in a Vector View
vsip_scalar_f vsip_vsumval_f(const vsip_vview_f* a);

Description

This function computes the sum of all elements in the vector view a and returns it.

n∑
i

ai

Parameters

• const vsip_vview_p * a: Pointer to the vector view.

Return Value

• The sum of all elements in the vector view.

Example

vsip_vview_f *vector_view;
vsip_scalar_f sum;

// Assuming vector_view has been properly initialized

sum = vsip_vsumval_f(vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

114

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.4 vsip_vsumsqval_p - Compute the Sum of Squares of Elements in a Vector View
vsip_scalar_f vsip_vsumsqval_f(const vsip_vview_f* a);

Description

This function computes the sum of the squares of all elements in the vector view a and returns it.

n∑
i

a2
i

Parameters

• const vsip_vview_p * a: Pointer to the vector view.

Return Value

• The sum of the squares of all elements in the vector view.

Example

vsip_vview_f *vector_view;
vsip_scalar_f sum_of_squares;

// Assuming vector_view has been properly initialized

sum_of_squares = vsip_vsumsqval_f(vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

115

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.5 vsip_vsq_p - Square Elements of a Vector View
void vsip_vsq_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function squares each element of the vector view a and stores the result in the vector view r.

r i = a2
i

Parameters

• const vsip_vview_p * a: Pointer to the source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_vsq_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

116

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.6 vsip_vrecip_p - Compute Reciprocal of Elements of a Vector View
void vsip_vrecip_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the reciprocal of each element of the vector view a and stores the result in the vector view r.

r i = 1
ai

Parameters

• const vsip_vview_p * a: Pointer to the source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_vrecip_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

117

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.7 vsip_vmin_p - Element-wise Minimum of Two Vector Views
void vsip_vmin_f(const vsip_vview_f* a, const vsip_vview_f* b, const vsip_vview_f* w);

Description

This function performs element-wise minimum comparison of the vector views a and b and stores the result in the vector
view w. Each element in w is the minimum of the corresponding elements in a and b.

wi =min(ai,bi)

Parameters

• const vsip_vview_p * a: Pointer to the first source vector view.

• const vsip_vview_p * b: Pointer to the second source vector view.

• const vsip_vview_p * w: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;

vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized

vsip_vmin_f(vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

118

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.8 vsip_vmax_p - Element-wise Maximum of Two Vector Views
void vsip_vmax_f(const vsip_vview_f* a, const vsip_vview_f* b, const vsip_vview_f* w);

Description

This function performs element-wise maximum comparison of the vector views a and b and stores the result in the vector
view w. Each element in w is the maximum of the corresponding elements in a and b.

wi =max(ai,bi)

Parameters

• const vsip_vview_p * a: Pointer to the first source vector view.

• const vsip_vview_p * b: Pointer to the second source vector view.

• const vsip_vview_p * w: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;

vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized

vsip_vmax_f(vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

119

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.9 vsip_vsin_p - Element-wise Sine of a Vector View
void vsip_vsin_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise sine of the vector view a and stores the result in the vector view r.

r i = sin(ai)

Parameters

• const vsip_vview_p * a: Pointer to the source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_vsin_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

120

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.10 vsip_vcos_p - Element-wise Cosine of a Vector View
void vsip_vcos_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise cosine of the vector view a and stores the result in the vector view r.

r i = cos(ai)

Parameters

• const vsip_vview_p * a: Pointer to the source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_vcos_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

121

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.11 vsip_vtan_p - Element-wise Tangent of a Vector View
void vsip_vtan_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise tangent of the vector view a and stores the result in the vector view r.

r i = tan(ai)

Parameters

• const vsip_vview_p * a: Pointer to the source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_vtan_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

122

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.12 vsip_vatan_p - Element-wise Arctangent of a Vector View
void vsip_vatan_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise arctangent (inverse tangent) of the vector view a and stores the result in the
vector view r.

r i = tan−1(ai)

Parameters

• const vsip_vview_p * a: Pointer to the source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_vatan_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

123

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.13 vsip_vexp_p - Element-wise Exponential of a Vector View
void vsip_vexp_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise exponential of the vector view a and stores the result in the vector view r.

r i = eai

Parameters

• const vsip_vview_p * a: Pointer to the source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_vexp_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

124

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.14 vsip_vlog_p - Element-wise Natural Logarithm of a Vector View
void vsip_vlog_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise natural logarithm of the vector view a and stores the result in the vector view
r.

r i = log(ai)

Parameters

• const vsip_vview_p * a: Pointer to the source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_vlog_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

125

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.15 vsip_vlog10_p - Element-wise Base-10 Logarithm of a Vector View
void vsip_vlog10_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise base-10 logarithm of the vector view a and stores the result in the vector view
r.

r i = log10(ai)

Parameters

• const vsip_vview_p * a: Pointer to the source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_vlog10_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

126

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.16 vsip_vsqrt_p - Element-wise Square Root of a Vector View
void vsip_vsqrt_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise square root of the vector view a and stores the result in the vector view r.

r i =p
ai

Parameters

• const vsip_vview_p * a: Pointer to the source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized

vsip_vsqrt_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

127

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.17 vsip_vatan2_p - Element-wise Arctangent of Two Vector Views
void vsip_vatan2_f(const vsip_vview_f* a, const vsip_vview_f* b, const vsip_vview_f* r);

Description

This function computes the element-wise arctangent of the quotient of the corresponding elements in the vector views a
and b and stores the result in the vector view r.

r i = tan−1(a/b)

Parameters

• const vsip_vview_p * a: Pointer to the first source vector view.

• const vsip_vview_p * b: Pointer to the second source vector view.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;

vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized

vsip_vatan2_f(vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

128

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.18 vsip_vfill_p - Fill a Vector View with a Scalar Value
void vsip_vfill_f(vsip_scalar_f alpha, const vsip_vview_f* r);

Description

This function fills the vector view r with the scalar value alpha.

r=α

Parameters

• vsip_scalar_p alpha: The scalar value to fill the vector view with.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view;
vsip_scalar_f scalar_value = 2.0;

// Assuming vector_view has been properly initialized

vsip_vfill_f(scalar_value, vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

129

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.19 vsip_vramp_p - Fill a Vector View with a Ramp
void vsip_vramp_f(vsip_scalar_f z, vsip_scalar_f d, const vsip_vview_f* r);

Description

This function fills the vector view r with a ramp starting at z and incrementing by d.

r i = z+di

Parameters

• vsip_scalar_p z: The starting value of the ramp.

• vsip_scalar_p d: The increment value of the ramp.

• const vsip_vview_p * r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view;
vsip_scalar_f start_value = 0.0;

vsip_scalar_f increment = 1.0;

// Assuming vector_view has been properly initialized

vsip_vramp_f(start_value, increment, vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

130

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.4. VECTOR COMPLEX

4.4 Vector Complex

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

131

4.4. VECTOR COMPLEX CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.4.1 vsip_cvjmul_p - Element-wise Complex Conjugate Multiplication of Two Complex
Vector Views

void vsip_cvjmul_f(const vsip_cvview_f* a, const vsip_cvview_f* b, const vsip_cvview_f* w);

Description

This function performs element-wise complex conjugate multiplication of the complex vector views a and b and stores
the result in the complex vector view w.

Parameters

• const vsip_cvview_p * a: Pointer to the first source complex vector view.

• const vsip_cvview_p * b: Pointer to the second source complex vector view.

• const vsip_cvview_p * w: Pointer to the destination complex vector view.

Example

vsip_cvview_f *complex_vector_a;
vsip_cvview_f *complex_vector_b;

vsip_cvview_f *result_vector;

// Assuming complex_vector_a, complex_vector_b, and result_vector have been properly initialized

vsip_cvjmul_f(complex_vector_a, complex_vector_b, result_vector);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

132

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.4. VECTOR COMPLEX

4.4.2 vsip_rcvmul_p - Element-wise Real-Complex Multiplication
void vsip_rcvmul_f(const vsip_vview_f* a, const vsip_cvview_f* b, const vsip_cvview_f* r);

Description

This function performs element-wise multiplication of the real vector view a and the complex vector view b and stores
the result in the complex vector view r.

Parameters

• const vsip_vview_p * a: Pointer to the source real vector view.

• const vsip_cvview_p * b: Pointer to the source complex vector view.

• const vsip_cvview_p * r: Pointer to the destination complex vector view.

Example

vsip_vview_f *real_vector;
vsip_cvview_f *complex_vector;

vsip_cvview_f *result_vector;

// Assuming real_vector, complex_vector, and result_vector have been properly initialized

vsip_rcvmul_f(real_vector, complex_vector, result_vector);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

133

4.4. VECTOR COMPLEX CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.4.3 vsip_rscvmul_p - Element-wise Scalar-Complex Multiplication
void vsip_rscvmul_f(vsip_scalar_f alpha, const vsip_cvview_f* b, const vsip_cvview_f* r);

Description

This function performs element-wise multiplication of the scalar alpha and the complex vector view b and stores the
result in the complex vector view r.

Parameters

• vsip_scalar_p alpha: The scalar value to multiply by.

• const vsip_cvview_p * b: Pointer to the source complex vector view.

• const vsip_cvview_p * r: Pointer to the destination complex vector view.

Example

vsip_scalar_f scalar = 2.0;
vsip_cvview_f *complex_vector;

vsip_cvview_f *result_vector;

// Assuming complex_vector and result_vector have been properly initialized

vsip_rscvmul_f(scalar, complex_vector, result_vector);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

134

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.4. VECTOR COMPLEX

4.4.4 vsip_cvconj_p - Element-wise Complex Conjugate of a Complex Vector View
void vsip_cvconj_f(const vsip_cvview_f* a, const vsip_cvview_f* r);

Description

This function computes the element-wise complex conjugate of the complex vector view a and stores the result in the
complex vector view r.

Parameters

• const vsip_cvview_p * a: Pointer to the source complex vector view.

• const vsip_cvview_p * r: Pointer to the destination complex vector view.

Example

vsip_cvview_f *complex_vector;
vsip_cvview_f *result_vector;

// Assuming complex_vector and result_vector have been properly initialized

vsip_cvconj_f(complex_vector, result_vector);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

135

4.4. VECTOR COMPLEX CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.4.5 vsip_cvmag_p - Compute Magnitude of Complex Vector View
void vsip_cvmag_f(const vsip_cvview_f *a, const vsip_vview_f *r);

Description

This function computes the element-wise magnitude (absolute value) of each complex element in the vector view a and
stores the result in the real vector view r. The magnitude of a complex number a+bi is calculated as

p
a2 +b2.

Parameters

• const vsip_cvview_p * a: Pointer to the source complex vector view.

• const vsip_vview_p * r: Pointer to the destination real vector view where the magnitudes will be stored.

Example

vsip_cvview_f *complex_vector_view;
vsip_vview_f *magnitude_vector_view;

// Assuming complex_vector_view and magnitude_vector_view have been properly initialized

vsip_cvmag_f(complex_vector_view, magnitude_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

136

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.4. VECTOR COMPLEX

4.4.6 vsip_vcmagsq_p - Element-wise Magnitude Squared of a Complex Vector View
void vsip_vcmagsq_f(const vsip_cvview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise magnitude squared of the complex vector view a and stores the result in the
real vector view r.

Parameters

• const vsip_cvview_p * a: Pointer to the source complex vector view.

• const vsip_vview_p * r: Pointer to the destination real vector view.

Example

vsip_cvview_f *complex_vector;
vsip_vview_f *real_vector;

// Assuming complex_vector and real_vector have been properly initialized

vsip_vcmagsq_f(complex_vector, real_vector);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

137

4.5. BOOLEAN CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.5 Boolean

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

138

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.5. BOOLEAN

4.5.1 vsip_vnot_p - Boolean Vector Logical NOT
void vsip_vnot_bl(const vsip_vview_bl *a, const vsip_vview_bl *b, const vsip_vview_bl *r);

Description

This function performs a logical NOT operation between corresponding elements of two boolean vectors a and b, storing
the result in the output vector r. The operation performs element-wise logical NOT:

r i = ai¬bi

for all i from 0 to n−1, where n is the length of the vectors.

Parameters

• const vsip_vview_p * a: First input boolean vector.

• const vsip_vview_p * b: Second input boolean vector.

• const vsip_vview_p * r: Output boolean vector that will store the result.

Example

vsip_vview_bl *a, *b, *r;
vsip_length n = 10;

// Create boolean vectors

a = vsip_vcreate_bl(n, VSIP_MEM_NONE);

b = vsip_vcreate_bl(n, VSIP_MEM_NONE);

r = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Initialize vectors with some boolean values

// For example, set alternating true/false patterns

for (vsip_length i = 0; i < n; i++) {

vsip_vput_bl(a, i, (i % 2) == 0); // true for even indices

vsip_vput_bl(b, i, (i % 3) == 0); // true for indices divisible by 3

}

// Perform logical AND operation

vsip_vnot_bl(a, b, r);

// The result vector r will now contain true only where both

// a and b had true values (indices 0, 6)

// Clean up

vsip_valldestroy_bl(a);

vsip_valldestroy_bl(b);

vsip_valldestroy_bl(r);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

139

4.5. BOOLEAN CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.5.2 vsip_vand_p - Boolean Vector Logical AND
void vsip_vand_bl(const vsip_vview_bl *a, const vsip_vview_bl *b, const vsip_vview_bl *r);

Description

This function performs a logical AND operation between corresponding elements of two boolean vectors a and b, storing
the result in the output vector r. The operation performs element-wise logical AND:

r i = ai ∧bi

for all i from 0 to n−1, where n is the length of the vectors.

Parameters

• const vsip_vview_p * a: First input boolean vector.

• const vsip_vview_p * b: Second input boolean vector.

• const vsip_vview_p * r: Output boolean vector that will store the result.

Example

vsip_vview_bl *a, *b, *r;
vsip_length n = 10;

// Create boolean vectors

a = vsip_vcreate_bl(n, VSIP_MEM_NONE);

b = vsip_vcreate_bl(n, VSIP_MEM_NONE);

r = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Initialize vectors with some boolean values

// For example, set alternating true/false patterns

for (vsip_length i = 0; i < n; i++) {

vsip_vput_bl(a, i, (i % 2) == 0); // true for even indices

vsip_vput_bl(b, i, (i % 3) == 0); // true for indices divisible by 3

}

// Perform logical AND operation

vsip_vand_bl(a, b, r);

// The result vector r will now contain true only where both

// a and b had true values (indices 0, 6)

// Clean up

vsip_valldestroy_bl(a);

vsip_valldestroy_bl(b);

vsip_valldestroy_bl(r);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

140

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.5. BOOLEAN

4.5.3 vsip_vor_p - Boolean Vector Logical OR
void vsip_vor_bl(const vsip_vview_bl *a, const vsip_vview_bl *b, const vsip_vview_bl *r);

Description

This function performs a logical OR operation between corresponding elements of two boolean vectors a and b, storing
the result in the output vector r. The operation performs element-wise logical OR:

r i = ai ∨bi

for all i from 0 to n−1, where n is the length of the vectors.

Parameters

• const vsip_vview_p * a: First input boolean vector.

• const vsip_vview_p * b: Second input boolean vector.

• const vsip_vview_p * r: Output boolean vector that will store the result.

Example

vsip_vview_bl *a, *b, *r;
vsip_length n = 10;

// Create boolean vectors

a = vsip_vcreate_bl(n, VSIP_MEM_NONE);

b = vsip_vcreate_bl(n, VSIP_MEM_NONE);

r = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Initialize vectors with some boolean values

// For example, set alternating true/false patterns

for (vsip_length i = 0; i < n; i++) {

vsip_vput_bl(a, i, (i % 2) == 0); // true for even indices

vsip_vput_bl(b, i, (i % 3) == 0); // true for indices divisible by 3

}

// Perform logical AND operation

vsip_vor_bl(a, b, r);

// The result vector r will now contain true only where both

// a and b had true values (indices 0, 6)

// Clean up

vsip_valldestroy_bl(a);

vsip_valldestroy_bl(b);

vsip_valldestroy_bl(r);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

141

4.5. BOOLEAN CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.5.4 vsip_vxor_p - Boolean Vector Logical XOR
void vsip_vxor_bl(const vsip_vview_bl *a, const vsip_vview_bl *b, const vsip_vview_bl *r);

Description

This function performs a logical XOR operation between corresponding elements of two boolean vectors a and b, storing
the result in the output vector r. The operation performs element-wise logical XOR:

r i = ai ⊕bi

for all i from 0 to n−1, where n is the length of the vectors.

Parameters

• const vsip_vview_p * a: First input boolean vector.

• const vsip_vview_p * b: Second input boolean vector.

• const vsip_vview_p * r: Output boolean vector that will store the result.

Example

vsip_vview_bl *a, *b, *r;
vsip_length n = 10;

// Create boolean vectors

a = vsip_vcreate_bl(n, VSIP_MEM_NONE);

b = vsip_vcreate_bl(n, VSIP_MEM_NONE);

r = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Initialize vectors with some boolean values

// For example, set alternating true/false patterns

for (vsip_length i = 0; i < n; i++) {

vsip_vput_bl(a, i, (i % 2) == 0); // true for even indices

vsip_vput_bl(b, i, (i % 3) == 0); // true for indices divisible by 3

}

// Perform logical AND operation

vsip_vxor_bl(a, b, r);

// The result vector r will now contain true only where both

// a and b had true values (indices 0, 6)

// Clean up

vsip_valldestroy_bl(a);

vsip_valldestroy_bl(b);

vsip_valldestroy_bl(r);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

142

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.5. BOOLEAN

4.5.5 vsip_valltrue_p - Check if All Elements in Boolean Vector are True
vsip_scalar_bl vsip_valltrue_bl(const vsip_vview_bl *a);

Description

This function checks whether all elements in a boolean vector are true. It returns a single boolean value that is true if
and only if every element in the input vector is true.

The function performs the following logical operation:

result= a0 ∧a1 ∧a2 ∧ . . .∧an−1

where ai are the elements of the input vector and n is the length of the vector.

Parameters

• const vsip_vview_p * a: Input boolean vector to check.

Return Value

• Returns true if all elements in the vector are true.

• Returns false if any element in the vector is false or if the vector is empty.

Example

vsip_vview_bl *conditions;
vsip_length n = 10;

vsip_scalar_bl all_valid;

// Create and initialize a boolean vector

conditions = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Set all elements to true (for demonstration)

vsip_vfill_bl(conditions, true);

// Check if all conditions are true

all_valid = vsip_valltrue_bl(conditions);

if (all_valid) {

printf("All conditions are satisfied.\n");

} else {

printf("Some conditions are not satisfied.\n");

}

// For a more practical example:

for (vsip_length i = 0; i < n; i++) {

// Set based on some actual conditions in your algorithm

vsip_vput_bl(conditions, i, (i % 2) == 0); // Only even indices are true

}

all_valid = vsip_valltrue_bl(conditions);

// all_valid will be false in this case

// Clean up

vsip_valldestroy_bl(conditions);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

143

4.5. BOOLEAN CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.5.6 vsip_vanytrue_p - Check if Any Element in Boolean Vector is True
vsip_scalar_bl vsip_vanytrue_bl(const vsip_vview_bl *a);

Description

This function checks whether any element in a boolean vector is true. It returns a single boolean value that is true if at
least one element in the input vector is true.

The function performs the following logical operation:

result= a0 ∨a1 ∨a2 ∨ . . .∨an−1

where ai are the elements of the input vector and n is the length of the vector.

Parameters

• const vsip_vview_p * a: Input boolean vector to check.

Return Value

• Returns true if at least one element in the vector is true.

• Returns false if all elements in the vector are false or if the vector is empty.

Example

vsip_vview_bl *flags;
vsip_length n = 100;

vsip_scalar_bl any_flag_set;

// Create and initialize a boolean vector

flags = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Set all elements to false initially

vsip_vfill_bl(flags, false);

// Set some flags based on your algorithm's conditions

// For example, set flag at index 42 to true

vsip_vput_bl(flags, 42, true);

// Check if any flag is set

any_flag_set = vsip_vanytrue_bl(flags);

if (any_flag_set) {

printf("At least one flag is set. Processing required.\n");

// Perform necessary processing for your application

} else {

printf("No flags are set. Skipping processing.\n");

}

// For a more practical example with actual conditions:

for (vsip_length i = 0; i < n; i++) {

// Set based on some actual conditions in your algorithm

vsip_vput_bl(flags, i, (i % 7) == 0); // Set flags for indices divisible by 7

}

any_flag_set = vsip_vanytrue_bl(flags);

// any_flag_set will be true in this case

// Clean up

vsip_valldestroy_bl(flags);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

144

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.5. BOOLEAN

4.5.7 vsip_vindexbool - Find Indices of True Elements in Boolean Vector
vsip_length vsip_vindexbool(const vsip_vview_bl *a, vsip_vview_vi *index);

Description

This function finds the indices of all true elements in a boolean vector and stores them in an integer index vector. It
returns the number of true elements found.

The function scans the input boolean vector a and records the positions of all elements that are true in the output
index vector. The function returns the count of true elements found.

Parameters

• const vsip_vview_bl* a: Input boolean vector to search.

• vsip_vview_vi* index: Output integer vector that will store the indices of true elements. This vector must be
large enough to hold all potential true indices (i.e., its length should be at least equal to the length of the input
boolean vector).

Return Value

• Returns the number of true elements found in the input vector.

• Returns 0 if no true elements are found or if the input vector is empty.

Example

vsip_vview_bl *conditions;
vsip_vview_vi *indices;

vsip_length n = 100;

vsip_length true_count;

// Create boolean vector

conditions = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Create index vector (same length as conditions)

indices = vsip_vcreate_vi(n, VSIP_MEM_NONE);

// Set some conditions to true (for example, every 5th element)

for (vsip_length i = 0; i < n; i++) {

vsip_vput_bl(conditions, i, (i % 5) == 0);

}

// Find indices of true elements

true_count = vsip_vindexbool(conditions, indices);

printf("Found %lu true elements at positions:\n", true_count);

for (vsip_length i = 0; i < true_count; i++) {

printf("%ld ", vsip_vget_vi(indices, i));

}

printf("\n");

// Use the indices for further processing in your algorithms

// For example, you could use these indices to select specific elements

// from another vector that corresponds to your conditions

// Clean up

vsip_valldestroy_bl(conditions);

vsip_valldestroy_vi(indices);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

145

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6 Manipulation Operations

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

146

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

4.6.1 vsip_vreal_p - Extract Real Part of a Complex Vector View
void vsip_vreal_f(const vsip_cvview_f* a, const vsip_vview_f* r);

Description

This function extracts the real part of the complex vector view a and stores the result in the real vector view r.

Parameters

• const vsip_cvview_p * a: Pointer to the source complex vector view.

• const vsip_vview_p * r: Pointer to the destination real vector view.

Example

vsip_cvview_f *complex_vector;
vsip_vview_f *real_vector;

// Assuming complex_vector and real_vector have been properly initialized

vsip_vreal_f(complex_vector, real_vector);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

147

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6.2 vsip_vimag_p - Extract Imaginary Part of a Complex Vector View
void vsip_vimag_f(const vsip_cvview_f* a, const vsip_vview_f* r);

Description

This function extracts the imaginary part of the complex vector view a and stores the result in the real vector view r.

Parameters

• const vsip_cvview_p * a: Pointer to the source complex vector view.

• const vsip_vview_p * r: Pointer to the destination real vector view.

Example

vsip_cvview_f *complex_vector;
vsip_vview_f *imag_vector;

// Assuming complex_vector and imag_vector have been properly initialized

vsip_vimag_f(complex_vector, imag_vector);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

148

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

4.6.3 vsip_vcmplx_p - Create a Complex Vector View from Real and Imaginary Parts
void vsip_vcmplx_f(const vsip_vview_f* a, const vsip_vview_f* b, const vsip_cvview_f* r);

Description

This function creates a complex vector view r from the real vector view a and the imaginary vector view b.

Parameters

• const vsip_vview_p * a: Pointer to the source real vector view.

• const vsip_vview_p * b: Pointer to the source imaginary vector view.

• const vsip_cvview_p * r: Pointer to the destination complex vector view.

Example

vsip_vview_f *real_vector;
vsip_vview_f *imag_vector;

vsip_cvview_f *complex_vector;

// Assuming real_vector, imag_vector, and complex_vector have been properly initialized

vsip_vcmplx_f(real_vector, imag_vector, complex_vector);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

149

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6.4 vsip_d vgather_p - Gather Elements from a Vector
void vsip_vgather_i(const vsip_vview_i *a, const vsip_vview_vi *b, const vsip_vview_i *r);
void vsip_vgather_f(const vsip_vview_f *a, const vsip_vview_vi *b, const vsip_vview_f *r);

void vsip_cvgather_f(const vsip_cvview_f *a, const vsip_vview_vi *b, const vsip_cvview_f *r);

Description

This function gathers elements from an input integer vector a according to the indices specified in vector b, and stores
the results in output vector r. The operation performs:

r i = abi

for all i from 0 to n−1, where n is the length of the index and output vectors.

Parameters

• const vsip_d vview_p * a: Input integer vector from which elements are gathered.

• const vsip_vview_vi* b: Index vector containing the positions of elements to gather from a.

• const vsip_d vview_p * r: Output integer vector that will store the gathered elements.

Example

vsip_vview_i *data, *result;
vsip_vview_vi *indices;

vsip_length n = 10; // Number of elements to gather

vsip_length data_size = 100; // Size of input data vector

// Create vectors

data = vsip_vcreate_i(data_size, VSIP_MEM_NONE);

result = vsip_vcreate_i(n, VSIP_MEM_NONE);

indices = vsip_vcreate_vi(n, VSIP_MEM_NONE);

// Initialize data vector with some values

for (vsip_length i = 0; i < data_size; i++) {

vsip_vput_i(data, i, i * 10); // Example data

}

// Set up indices to gather (e.g., every 10th element)

for (vsip_length i = 0; i < n; i++) {

vsip_vput_vi(indices, i, i * 10);

}

// Gather elements from data vector

vsip_vgather_i(data, indices, result);

// The result vector now contains elements from data at positions:

// 0, 10, 20, 30, 40, 50, 60, 70, 80, 90

// Print results

printf("Gathered elements:\n");

for (vsip_length i = 0; i < n; i++) {

printf("%d ", vsip_vget_i(result, i));

}

printf("\n");

// Clean up

vsip_valldestroy_i(data);

vsip_valldestroy_i(result);

vsip_valldestroy_vi(indices);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

150

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

Notes

• The index vector b must contain valid indices for the input vector a (i.e., 0≤ bi < length(a)).

• The output vector r must have the same length as the index vector b.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

151

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6.5 vsip_d vscatter_p - Scatter Elements to a Vector
void vsip_vscatter_i(const vsip_vview_i *a, const vsip_vview_i *r, const vsip_vview_vi *b);
void vsip_vscatter_f(const vsip_vview_f *a, const vsip_vview_f *r, const vsip_vview_vi *b);

void vsip_cvscatter_f(const vsip_cvview_f *a, const vsip_cvview_f *r, const vsip_vview_vi *b);

Description

This function scatters elements from an input integer vector a into specific positions of an output vector r, with the
positions specified by the index vector b. The operation performs:

rbi = ai

for all i from 0 to n−1, where n is the length of the input and index vectors.

Parameters

• const vsip_d vview_p * a: Input integer vector containing elements to scatter.

• const vsip_d vview_p * r: Output integer vector that will receive the scattered elements.

• const vsip_vview_vi* b: Index vector containing the positions in r where elements from a should be placed.

Example

vsip_vview_i *data, *result;
vsip_vview_vi *indices;

vsip_length n = 10; // Number of elements to scatter

vsip_length result_size = 100; // Size of output vector

// Create vectors

data = vsip_vcreate_i(n, VSIP_MEM_NONE);

result = vsip_vcreate_i(result_size, VSIP_MEM_NONE);

indices = vsip_vcreate_vi(n, VSIP_MEM_NONE);

// Initialize data vector with values to scatter

for (vsip_length i = 0; i < n; i++) {

vsip_vput_i(data, i, i * i); // Example: square numbers

}

// Initialize result vector (e.g., with zeros)

vsip_vfill_i(result, 0);

// Set up indices where to scatter elements (e.g., every 10th position)

for (vsip_length i = 0; i < n; i++) {

vsip_vput_vi(indices, i, i * 10);

}

// Scatter elements to result vector

vsip_vscatter_i(data, result, indices);

// The result vector now has non-zero values at positions:

// 0, 10, 20, 30, 40, 50, 60, 70, 80, 90

// containing the values from the data vector

// Print some results

printf("Scattered elements at positions:\n");

for (vsip_length i = 0; i < n; i++) {

vsip_length pos = vsip_vget_vi(indices, i);

printf("Position %ld: %d\n", pos, vsip_vget_i(result, pos));

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

152

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

// Clean up

vsip_valldestroy_i(data);

vsip_valldestroy_i(result);

vsip_valldestroy_vi(indices);

Notes

• The index vector b must contain valid indices for the output vector r (i.e., 0≤ bi < length(r)).

• The input vector a and index vector b must have the same length.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

153

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6.6 vsip_d vswap_p - Swap Elements Between two Vectors
void vsip_vswap_i(const vsip_vview_i *a, const vsip_vview_i *b);
void vsip_vswap_f(const vsip_vview_f *a, const vsip_vview_f *b);

void vsip_cvswap_f(const vsip_cvview_f *a, const vsip_cvview_f *b);

Description

This function swaps the elements between two floating-point vectors a and b at Jan Adelsbach’s workspace. After the
operation, vector a will contain the elements that were originally in vector b, and vice versa. The operation performs an
element-wise swap:

temp= ai

ai = bi

bi = temp

for all i from 0 to n−1, where n is the length of the vectors.

Parameters

• const vsip_d vview_p * a: First floating-point vector.

• const vsip_d vview_p * b: Second floating-point vector.

Example

vsip_vview_f *signal1, *signal2;
vsip_length n = 1024; // Vector length

// Create vectors for your signal processing

signal1 = vsip_vcreate_f(n, VSIP_MEM_NONE);

signal2 = vsip_vcreate_f(n, VSIP_MEM_NONE);

// Initialize vectors with some data

// For example, fill with sample data for your algorithms

vsip_vramp_f(0.0f, 1.0f, signal1); // signal1 = [0, 1, 2, ..., 1023]

vsip_vramp_f(10.0f, -0.5f, signal2); // signal2 = [10, 9.5, 9, ..., -502]

// Print some values before swap

printf("Before swap:\n");

printf("signal1[0:4] = %.2f, %.2f, %.2f, %.2f\n",

vsip_vget_f(signal1, 0), vsip_vget_f(signal1, 1),

vsip_vget_f(signal1, 2), vsip_vget_f(signal1, 3));

printf("signal2[0:4] = %.2f, %.2f, %.2f, %.2f\n",

vsip_vget_f(signal2, 0), vsip_vget_f(signal2, 1),

vsip_vget_f(signal2, 2), vsip_vget_f(signal2, 3));

// Swap the vectors

vsip_vswap_f(signal1, signal2);

// Now signal1 contains the original signal2 data and vice versa

printf("\nAfter swap:\n");

printf("signal1[0:4] = %.2f, %.2f, %.2f, %.2f\n",

vsip_vget_f(signal1, 0), vsip_vget_f(signal1, 1),

vsip_vget_f(signal1, 2), vsip_vget_f(signal1, 3));

printf("signal2[0:4] = %.2f, %.2f, %.2f, %.2f\n",

vsip_vget_f(signal2, 0), vsip_vget_f(signal2, 1),

vsip_vget_f(signal2, 2), vsip_vget_f(signal2, 3));

// Clean up

vsip_valldestroy_f(signal1);

vsip_valldestroy_f(signal2);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

154

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

Notes

• Both vectors must have the same length.

• The operation is performed in-place on both vectors.

• This operation is more efficient than manually copying elements between vectors using a temporary buffer.

• Be cautious when using this function with vectors that might be views of the same underlying data, as this could
lead to unexpected results.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

155

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6.7 vsip_vrect_p - Convert Cartesian Coordinates to Complex Numbers

void vsip_vrect_f(const vsip_vview_f *a, const vsip_vview_f *b, const vsip_cvview_f *r);

Description

This function converts pairs of real vectors representing Cartesian coordinates (real and imaginary parts) into a complex
vector.

The operation performs element-wise conversion:

r i = ai + j ·bi

for all i from 0 to n−1, where n is the length of the vectors, ai is the real part, bi is the imaginary part, and r i is the
resulting complex number.

Parameters

• const vsip_vview_p * a: Input vector containing real parts.

• const vsip_vview_p * b: Input vector containing imaginary parts.

• const vsip_cvview_p * r: Output complex vector that will store the results.

Example

vsip_vview_f *real_parts, *imag_parts;
vsip_cvview_f *complex_numbers;

vsip_length n = 10;

// Create vectors

real_parts = vsip_vcreate_f(n, VSIP_MEM_NONE);

imag_parts = vsip_vcreate_f(n, VSIP_MEM_NONE);

complex_numbers = vsip_cvcreate_f(n, VSIP_MEM_NONE);

// Initialize real and imaginary parts

// For example, create a complex signal

for (vsip_length i = 0; i < n; i++) {

vsip_vput_f(real_parts, i, cos(2 * M_PI * i / n)); // Real parts

vsip_vput_f(imag_parts, i, sin(2 * M_PI * i / n)); // Imaginary parts

}

// Convert to complex numbers

vsip_vrect_f(real_parts, imag_parts, complex_numbers);

// The complex_numbers vector now contains the complex representation

// of your signal, which can be used in further complex operations

// Print some results

printf("Complex numbers (first 3 elements):\n");

for (vsip_length i = 0; i < 3; i++) {

vsip_cscalar_f val = vsip_cvget_f(complex_numbers, i);

printf("(%.4f, %.4f) ", val.r, val.i);

}

printf("\n");

// Clean up

vsip_valldestroy_f(real_parts);

vsip_valldestroy_f(imag_parts);

vsip_cvalldestroy_f(complex_numbers);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

156

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

Notes

• All three vectors must have the same length.

• This operation is the inverse of vsip_vpolar_p which converts from polar to Cartesian coordinates.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

157

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6.8 vsip_vpolar_p - Convert Polar Coordinates to Cartesian

void vsip_vpolar_f(const vsip_cvview_f *a, const vsip_vview_f *r, const vsip_vview_f *s);

Description

This function converts complex numbers from a complex vector into their polar coordinate representation (magnitude
and phase). The operation performs element-wise conversion from Cartesian to polar coordinates:

r i = |ai|

si = arg(ai)

for all i from 0 to n−1, where n is the length of the vectors, r i is the magnitude, and si is the phase (angle in radians)
of the complex number ai.

Parameters

• const vsip_cvview_p * a: Input complex vector.

• const vsip_vview_p * r: Output vector that will store the magnitudes.

• const vsip_vview_p * s: Output vector that will store the phases (in radians).

Example

vsip_cvview_f *complex_signal;
vsip_vview_f *magnitudes, *phases;

vsip_length n = 10;

// Create vectors

complex_signal = vsip_cvcreate_f(n, VSIP_MEM_NONE);

magnitudes = vsip_vcreate_f(n, VSIP_MEM_NONE);

phases = vsip_vcreate_f(n, VSIP_MEM_NONE);

// Initialize complex signal (e.g., with some complex values)

for (vsip_length i = 0; i < n; i++) {

float real = cos(2 * M_PI * i / n);

float imag = sin(2 * M_PI * i / n);

vsip_cvput_f(complex_signal, i, VSIP_CMPLX_F(real, imag));

}

// Convert to polar coordinates

vsip_vpolar_f(complex_signal, magnitudes, phases);

// The magnitudes and phases vectors now contain the polar representation

// of your complex signal

// Print some results

printf("Magnitude and Phase (first 3 elements):\n");

for (vsip_length i = 0; i < 3; i++) {

printf("Element %ld: Magnitude = %.4f, Phase = %.4f radians\n",

i, vsip_vget_f(magnitudes, i), vsip_vget_f(phases, i));

}

// Clean up

vsip_cvalldestroy_f(complex_signal);

vsip_valldestroy_f(magnitudes);

vsip_valldestroy_f(phases);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

158

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

Notes

• All three vectors must have the same length.

• The phase values are returned in radians in the range [−π,π].

• This operation is the inverse of vsip_vrect_p which converts from Cartesian to polar coordinates.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

159

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

160

Chapter 5

Signal Processing Functions

161

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.1 FFT Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

162

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.1 vsip_dd fftop_create_p - Create FFT Objects (Out-of-Place)
typedef enum _vsip_fft_dir {

VSIP_FFT_FWD = -1,

VSIP_FFT_INV = +1

} vsip_fft_dir;

typedef enum _vsip_alg_hint {

VSIP_ALG_TIME = 0,

VSIP_ALG_SPACE = 1,

VSIP_ALG_NOISE = 2

} vsip_alg_hint;

vsip_fft_f* vsip_ccfftop_create_f(vsip_length length, vsip_scalar_f scale,

vsip_fft_dir sign, vsip_length ntimes,

vsip_alg_hint hint);

vsip_fft_f* vsip_rcfftop_create_f(vsip_length length, vsip_scalar_f scale,

vsip_fft_dir sign, vsip_length ntimes,

vsip_alg_hint hint);

vsip_fft_f* vsip_crfftop_create_f(vsip_length length, vsip_scalar_f scale,

vsip_fft_dir sign, vsip_length ntimes,

vsip_alg_hint hint);

Description

These functions create FFT (Fast Fourier Transform) objects for different types of FFT operations:

• vsip_ccfftop_create_p : Creates an FFT object for complex-to-complex out-of-place FFT.

• vsip_rcfftop_create_p : Creates an FFT object for real-to-complex out-of-place FFT.

• vsip_crfftop_create_p : Creates an FFT object for complex-to-real out-of-place FFT.

Each function initializes the FFT object with the specified length, scale factor, direction, number of times to apply
the FFT, and algorithm hint.

The performance for supported FFT sizes is standardized as O(n logn). For sizes not directly supported by the FFT
kernels a DFT fallback with a performance of O(n2) is standardized.

Parameters

• vsip_length length: The length of the FFT.

• vsip_scalar_f scale: The scale factor to apply to the FFT result.

• vsip_fft_dir sign: The direction of the FFT.

– VSIP_FFT_FWD - Forward

– VSIP_FFT_INV - Inverse

• vsip_length ntimes: The number of times to apply the FFT.

• vsip_alg_hint hint: Algorithm hint for the FFT.

– VSIP_ALG_TIME - Optimize for time

– VSIP_ALG_SPACE - Optimize for memory usage

– VSIP_ALG_NOISE - Optimize for noise

Return Value

• On success, a pointer to the newly created FFT object is returned.

• On error, NULL is returned.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

163

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

Example

vsip_length length = 1024;
vsip_scalar_f scale = 1.0;

vsip_fft_dir direction = VSIP_FFT_FWD; // Forward FFT

vsip_length ntimes = 1;

vsip_alg_hint hint = VSIP_ALG_TIME;

vsip_fft_f *fft_cc;

vsip_fft_f *fft_rc;

vsip_fft_f *fft_cr;

// Create complex-to-complex FFT object

fft_cc = vsip_ccfftop_create_f(length, scale, direction, ntimes, hint);

if (fft_cc == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

164

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.2 vsip_ccfftip_create_p - Create FFT Object (In-Place)
typedef enum _vsip_fft_dir {

VSIP_FFT_FWD = -1,

VSIP_FFT_INV = +1

} vsip_fft_dir;

typedef enum _vsip_alg_hint {

VSIP_ALG_TIME = 0,

VSIP_ALG_SPACE = 1,

VSIP_ALG_NOISE = 2

} vsip_alg_hint;

vsip_fft_f* vsip_ccfftip_create_f(vsip_length length, vsip_scalar_f scale,

vsip_fft_dir sign, vsip_length ntimes,

vsip_alg_hint hint);

Description

These functions create FFT (Fast Fourier Transform) object for a complex-to-complex in-place FFT. The functions ini-
tialize a FFT object with the specified length, scale factor, direction, number of times to apply the FFT, and algorithm
hint.

The performance for supported FFT sizes is standardized as O(n logn). For sizes not directly supported by the FFT
kernels a DFT fallback with a performance of O(n2) is standardized.

Parameters

• vsip_length length: The length of the FFT.

• vsip_scalar_f scale: The scale factor to apply to the FFT result.

• vsip_fft_dir sign: The direction of the FFT.

– VSIP_FFT_FWD - Forward

– VSIP_FFT_INV - Inverse

• vsip_length ntimes: The number of times to apply the FFT.

• vsip_alg_hint hint: Algorithm hint for the FFT.

– VSIP_ALG_TIME - Optimize for time

– VSIP_ALG_SPACE - Optimize for memory usage

– VSIP_ALG_NOISE - Optimize for noise

Return Value

• On success, a pointer to the newly created FFT object is returned.

• On error, NULL is returned.

Example

vsip_length length = 1024;
vsip_scalar_f scale = 1.0;

vsip_fft_dir direction = VSIP_FFT_FWD; // Forward FFT

vsip_length ntimes = 1;

vsip_alg_hint hint = VSIP_ALG_TIME;

vsip_fft_f *fft_cc;

vsip_fft_f *fft_rc;

vsip_fft_f *fft_cr;

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

165

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

// Create complex-to-complex FFT object

fft_cc = vsip_ccfftip_create_f(length, scale, direction, ntimes, hint);

if (fft_cc == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

166

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.3 vsip_fft_destroy_p - Destroy an FFT Object
int vsip_fft_destroy_f(vsip_fft_f *fft);

Description

This function destroys the specified FFT object and frees associated resources.

Parameters

• vsip_fft_p * fft: Pointer to the FFT object to be destroyed.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error.

Example

vsip_fft_f *fft;
int result;

// Assuming fft has been properly initialized

result = vsip_fft_destroy_f(fft);

if (result != 0) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

167

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.1.4 vsip_fft_getattr_p - Get FFT Object Attributes
typedef struct _vsip_fft_attr_f {

vsip_scalar_vi input;

vsip_scalar_vi output;

vsip_fft_place place;

vsip_scalar_f scale;

vsip_fft_dir dir;

} vsip_fft_attr_f;

void vsip_fft_getattr_f(const vsip_fft_f *fft, vsip_fft_attr_f *attr);

Description

This function retrieves the attributes of an FFT (Fast Fourier Transform) object and stores them in the provided attribute
structure.

Parameters

• const vsip_fft_p * fft: Pointer to the FFT object.

• vsip_fft_attr_p * attr: Pointer to the attribute structure where the FFT object attributes will be stored.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

168

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.5 vsip_dd fftop_p - Perform FFT Operations (Out-of-Place)
void vsip_ccfftop_f(const vsip_fft_f *fft, const vsip_cvview_f *x, const vsip_cvview_f *y);
void vsip_rcfftop_f(const vsip_fft_f *fft, const vsip_vview_f *x, const vsip_cvview_f *y);

void vsip_crfftop_f(const vsip_fft_f *fft, const vsip_cvview_f *x, const vsip_vview_f *y);

Description

These functions perform FFT (Fast Fourier Transform) operations using the specified FFT object. Each function handles
a different type of FFT:

• vsip_ccfftop_p : Performs a out-of-place complex-to-complex FFT.

• vsip_rcfftop_p : Performs a out-of-place real-to-complex FFT.

• vsip_crfftop_p : Performs a out-of-place complex-to-real FFT.

The performance for supported FFT sizes is standardized as O(n logn). For sizes not directly supported by the FFT
kernels a DFT fallback with a performance of O(n2) is standardized.

Parameters

• const vsip_fft_p * fft: Pointer to the FFT object.

• const vsip_d vview_p * x: Pointer to the input complex vector view

• const vsip_d vview_p * y: Pointer to the output complex vector view

Example

vsip_fft_f *fft_cc;
vsip_fft_f *fft_rc;

vsip_fft_f *fft_cr;

vsip_cvview_f *complex_input;

vsip_cvview_f *complex_output;

vsip_vview_f *real_input;

vsip_vview_f *real_output;

// Assuming fft_cc, fft_rc, fft_cr, complex_input, complex_output, real_input, and real_output have been properly initialized

// Perform complex-to-complex FFT

vsip_ccfftop_f(fft_cc, complex_input, complex_output);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

169

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.1.6 vsip_ccfftip_p - Perform FFT Operations (In-Place)
void vsip_ccfftip_f(const vsip_fft_f *fft, const vsip_cvview_f *y);

Description

These functions perform FFT (Fast Fourier Transform) operations using the specified FFT object in-place.
The performance for supported FFT sizes is standardized as O(n logn). For sizes not directly supported by the FFT

kernels a DFT fallback with a performance of O(n2) is standardized.

Parameters

• const vsip_fft_p * fft: Pointer to the FFT object.

• const vsip_cvview_p * y: Pointer to the complex input and output vector view.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

170

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.7 vsip_dd ffmop_create_p - Create Multiple-FFT Objects (Out-of-Place)
typedef enum _vsip_fft_dir {

VSIP_FFT_FWD = -1,

VSIP_FFT_INV = +1

} vsip_fft_dir;

typedef enum _vsip_alg_hint {

VSIP_ALG_TIME = 0,

VSIP_ALG_SPACE = 1,

VSIP_ALG_NOISE = 2

} vsip_alg_hint;

typedef enum {

VSIP_ROW = 0,

VSIP_COL = 1

} vsip_major;

vsip_fftm_f* vsip_ccfftmop_create_f(vsip_length m, vsip_length n,

vsip_scalar_f scale, vsip_fft_dir dir,

vsip_major major, vsip_length ntimes,

vsip_alg_hint hint);

vsip_fftm_f* vsip_crfftmop_create_f(vsip_length m, vsip_length n,

vsip_scalar_f scale, vsip_major major,

vsip_length ntimes, vsip_alg_hint hint);

vsip_fftm_f* vsip_rcfftmop_create_f(vsip_length m, vsip_length n,

vsip_scalar_f scale, vsip_major major,

vsip_length ntimes, vsip_alg_hint hint);

Description

These functions create Multiple-FFT (Fast Fourier Transform) objects for different types of FFT operations:

• vsip_ccffmop_create_p : Creates an Multiple-FFT object for complex-to-complex out-of-place FFT.

• vsip_rcffmop_create_p : Creates an Multiple-FFT object for real-to-complex out-of-place FFT.

• vsip_crffmop_create_p : Creates an Multiple-FFT object for complex-to-real out-of-place FFT.

Each function initializes the FFT object with the specified length, scale factor, direction, number of times to apply
the FFT, and algorithm hint.

The performance for supported FFT sizes is standardized as O(n logn). For sizes not directly supported by the FFT
kernels a DFT fallback with a performance of O(n2) is standardized.

Parameters

• vsip_length m: The length of columns or rows, depending on the given major.

• vsip_length n: The length of rows or columns, depending on the given major.

• vsip_scalar_f scale: The scale factor to apply to the FFT result.

• vsip_fft_dir sign: The direction of the FFT.

– VSIP_FFT_FWD - Forward

– VSIP_FFT_INV - Inverse

• vsip_major major: Direction of the multiple-FFT:

– VSIP_ROW - Row Major

– VSIP_Col - Column Major

• vsip_length ntimes: The number of times to apply the FFT.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

171

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

• vsip_alg_hint hint: Algorithm hint for the FFT.

– VSIP_ALG_TIME - Optimize for time

– VSIP_ALG_SPACE - Optimize for memory usage

– VSIP_ALG_NOISE - Optimize for noise

Return Value

• On success, a pointer to the newly created FFT object is returned.

• On error, NULL is returned.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

172

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.8 vsip_ccffmip_create_p - Create Multilpe-FFT Object (In-Place)
typedef enum _vsip_fft_dir {

VSIP_FFT_FWD = -1,

VSIP_FFT_INV = +1

} vsip_fft_dir;

typedef enum _vsip_alg_hint {

VSIP_ALG_TIME = 0,

VSIP_ALG_SPACE = 1,

VSIP_ALG_NOISE = 2

} vsip_alg_hint;

vsip_fftm_f* vsip_ccfftmip_create_f(vsip_length m, vsip_length n,

vsip_scalar_f scale, vsip_fft_dir dir,

vsip_major major, vsip_length ntimes,

vsip_alg_hint hint);

Description

These functions create a Multiple-FFT (Fast Fourier Transform) object for a complex-to-complex in-place FFT. The
functions initialize a FFT object with the specified length, scale factor, direction, number of times to apply the FFT, and
algorithm hint.

Parameters

• vsip_length m: The length of columns or rows, depending on the given major.

• vsip_length n: The length of rows or columns, depending on the given major.

• vsip_scalar_f scale: The scale factor to apply to the FFT result.

• vsip_fft_dir sign: The direction of the FFT.

– VSIP_FFT_FWD - Forward

– VSIP_FFT_INV - Inverse

• vsip_major major: Direction of the multiple-FFT:

– VSIP_ROW - Row Major

– VSIP_Col - Column Major

• vsip_length ntimes: The number of times to apply the FFT.

• vsip_alg_hint hint: Algorithm hint for the FFT.

– VSIP_ALG_TIME - Optimize for time

– VSIP_ALG_SPACE - Optimize for memory usage

– VSIP_ALG_NOISE - Optimize for noise

Return Value

• On success, a pointer to the newly created FFT object is returned.

• On error, NULL is returned.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

173

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.1.9 vsip_fftm_destroy_p - Destroy a Multiple-FFT Object
int vsip_fftm_destroy_f(vsip_fftm_f *fft);

Description

This function destroys the specified Multiple-FFT object and frees associated resources.

Parameters

• vsip_fftm_p * fft: Pointer to the Multiple-FFT object to be destroyed.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

174

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.10 vsip_fftm_getattr_p - Get Multple-FFT Object Attributes
typedef struct _vsip_fftm_attr_f {

vsip_scalar_mi input;

vsip_scalar_mi output;

vsip_fft_place place;

vsip_scalar_f scale;

vsip_fft_dir dir;

vsip_major major;

} vsip_fftm_attr_f;

void vsip_fftm_getattr_f(const vsip_fftm_f *fft, vsip_fftm_attr_f *attr);

Description

This function retrieves the attributes of an Multiple-FFT (Fast Fourier Transform) object and stores them in the provided
attribute structure.

Parameters

• const vsip_fftm_p * fft: Pointer to the FFT object.

• vsip_fftm_attr_p * attr: Pointer to the attribute structure where the FFT object attributes will be stored.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

175

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.1.11 vsip_dd ffmop_p - Perform Multiple-FFT Operations (Out-of-Place)
void vsip_ccfftmop_f(const vsip_fftm_f *fft, const vsip_cmview_f *x, const vsip_cmview_f *y);
void vsip_crfftmop_f(const vsip_fftm_f *fft, const vsip_cmview_f *x, const vsip_mview_f *y);

void vsip_rcfftmop_f(const vsip_fftm_f *fft, const vsip_mview_f *x, const vsip_cmview_f *y);

Description

These functions perform Multiple-FFT (Fast Fourier Transform) operations using the specified FFT object. Each function
handles a different type of FFT:

• vsip_ccffmop_p : Performs a out-of-place complex-to-complex Multiple-FFT.

• vsip_rcffmop_p : Performs a out-of-place real-to-complex Multiple-FFT.

• vsip_crffmop_p : Performs a out-of-place complex-to-real Multiple-FFT.

Parameters

• const vsip_fftm_p * fft: Pointer to the FFT object.

• const vsip_d mview_p * x: Pointer to the input complex matrix view

• const vsip_d mview_p * y: Pointer to the output complex matrix view

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

176

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.12 vsip_ccffmip_p - Perform Multiple-FFT Operations (In-Place)
void vsip_ccffmip_f(const vsip_fftm_f *fft, const vsip_cmview_f *y);

Description

These functions perform Multiple-FFT (Fast Fourier Transform) operations using the specified FFT object in-place.

Parameters

• const vsip_fftm_p * fft: Pointer to the FFT object.

• const vsip_cmview_p * y: Pointer to the complex input and output matrix view.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

177

5.2. CONVOLUTION AND CORRELATION FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.2 Convolution and Correlation Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

178

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.2. CONVOLUTION AND CORRELATION FUNCTIONS

5.2.1 vsip_d conv1d_create_p - Create 1D Convolution Object
typedef enum _vsip_alg_hint {

VSIP_ALG_TIME = 0,

VSIP_ALG_SPACE = 1,

VSIP_ALG_NOISE = 2

} vsip_alg_hint;

typedef enum _vsip_support_region {

VSIP_SUPPORT_FULL = 0,

VSIP_SUPPORT_SAME = 1,

VSIP_SUPPORT_MIN = 2,

} vsip_support_region;

typedef enum _vsip_symmetry {

VSIP_NONSYM = 0,

VSIP_SYM_EVEN_LEN_ODD = 1,

VSIP_SYM_EVEN_LEN_EVEN = 2

} vsip_symmetry;

vsip_conv1d_f* vsip_conv1d_create_f(const vsip_vview_f *h, vsip_symmetry symm, vsip_length n, vsip_length d, vsip_support_region support, vsip_length ntimes, vsip_alg_hint hint);

Description

This function creates a one-dimensional convolution object. The convolution object can handle various types of impulse
responses and supports different output regions and decimation factors.

Parameters

• const vsip_d vview_p * h: Vector containing the impulse response (filter coefficients).

• vsip_symmetry symm: Symmetry of the impulse response:

– VSIP_SYM_EVEN_LEN_ODD: Even symmetry, odd length

– VSIP_SYM_ODD_LEN_EVEN: Odd symmetry, even length

– VSIP_NOSYM: No symmetry

• vsip_length n: Length of the input signal.

• vsip_length d: Decimation factor (1 for no decimation).

• vsip_support_region support: Support region for the convolution:

– VSIP_SUPPORT_FULL: Full convolution. Output length is ⌊(n+m−2)/d⌋+1

– VSIP_SUPPORT_SAME: Same-length output. Output length is ⌊(n−1)/d⌋+1

– VSIP_SUPPORT_MIN: Minimum-length output. Output length is ⌊(n−1)/d⌋−⌊(m−1)/d⌋+1

• vsip_length ntimes: Number of times the convolution will be applied.

• vsip_alg_hint hint: Algorithm hint for optimization:

– VSIP_ALG_TIME: Optimize for computation time

– VSIP_ALG_SPACE: Optimize for memory usage

– VSIP_ALG_NOHINT: No specific optimization

Return Value

• On success: Pointer to the newly created 1D convolution object.

• On error (e.g., memory allocation failure): NULL.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

179

5.2. CONVOLUTION AND CORRELATION FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

Example

vsip_conv1d_f *conv;
vsip_vview_f *h;

vsip_length h_len = 31; // Impulse response length

vsip_length n = 1024; // Input signal length

vsip_length d = 1; // No decimation

// Create impulse response vector

h = vsip_vcreate_f(h_len, VSIP_MEM_NONE);

// Initialize impulse response (e.g., Gaussian kernel)

// vsip_vramp_f(0.0f, 1.0f, h);

// Apply window function or other modifications to h...

// Create convolution object for full convolution

conv = vsip_conv1d_create_f(h, VSIP_SYM_NONE, n, d,

VSIP_SUPPORT_FULL, 100, VSIP_ALG_TIME);

if (conv == NULL) {

fprintf(stderr, "Error: Could not create convolution object\n");

return;

}

// Use the convolution object for your signal processing

// vsip_vview_f *input = vsip_vcreate_f(n, VSIP_MEM_NONE);

// vsip_vview_f *output = vsip_vcreate_f(n + h_len - 1, VSIP_MEM_NONE);

// vsip_conv1d_f(conv, input, output);

// Clean up when done

vsip_conv1d_destroy_f(conv);

vsip_vdestroy_f(h);

Notes

• The convolution object should be destroyed with vsip_d conv1d_destroy_p when no longer needed.

• The decimation factor d allows for downsampling the output.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

180

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.2. CONVOLUTION AND CORRELATION FUNCTIONS

5.2.2 vsip_d conv1d_destroy_p - Destroy 1D Convolution Object
vsip_length vsip_conv1d_destroy_f(vsip_conv1d_f *conv1d);

Description

This function releases all memory and resources associated with a 1D convolution object that was previously created
with vsip_d conv1d_create_p .

Parameters

• vsip_d conv1d_p * conv1d: Pointer to the 1D convolution object to be destroyed.

Return Value

• Returns 0.

Example

vsip_conv1d_f *conv;
vsip_vview_f *h;

vsip_length h_len = 31; // Impulse response length

vsip_length n = 1024; // Input signal length

// Create impulse response vector

h = vsip_vcreate_f(h_len, VSIP_MEM_NONE);

// Create convolution object

conv = vsip_conv1d_create_f(h, VSIP_NOSYM, n, 1,

VSIP_SUPPORT_FULL, 100, VSIP_ALG_TIME);

if (conv == NULL) {

fprintf(stderr, "Error: Could not create convolution object\n");

return;

}

// Use the convolution object for your signal processing

// ... your convolution operations ...

// Destroy convolution object when done

vsip_conv1d_destroy_f(conv);

vsip_valldestroy_f(h);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

181

5.2. CONVOLUTION AND CORRELATION FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.2.3 vsip_d conv1d_getattr_p - Get 1D Convolution Object Attributes
typedef struct _vsip_conv1d_attr_f {

vsip_scalar_vi kernel_len; // Kernel length

vsip_symmetry symm; // Symmetry

vsip_scalar_vi data_len; // Data length

vsip_support_region support; // Support

vsip_scalar_vi out_len; // Output length

vsip_length decimation; // Decimation

} vsip_conv1d_attr_f;

void vsip_conv1d_getattr_f(const vsip_conv1d_f *conv1d, vsip_conv1d_attr_f *attr);

Description

This function retrieves the attributes of a 1D convolution object and stores them in the provided attribute structure.

Parameters

• const vsip_d conv1d_p * conv1d: Pointer to the 1D convolution object created with vsip_d conv1d_create_p .

• vsip_d conv1d_attr_p * attr: Pointer to the attribute structure where the convolution object attributes will be
stored.

Example

vsip_conv1d_f *conv;
vsip_conv1d_attr_f attr;

vsip_vview_f *h;

vsip_length h_len = 31; // Impulse response length

vsip_length n = 1024; // Input signal length

// Create impulse response vector

h = vsip_vcreate_f(h_len, VSIP_MEM_NONE);

// Create convolution object

conv = vsip_conv1d_create_f(h, VSIP_SYM_NONE, n, 1,

VSIP_SUPPORT_FULL, 100, VSIP_ALG_TIME);

if (conv == NULL) {

fprintf(stderr, "Error: Could not create convolution object\n");

return;

}

// Get the attributes of the convolution object

vsip_conv1d_getattr_f(conv, &attr);

// Clean up

vsip_conv1d_destroy_f(conv);

vsip_valldestroy_f(h);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

182

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.2. CONVOLUTION AND CORRELATION FUNCTIONS

5.2.4 vsip_d convolve1d_p - Perform 1D Convolution
void vsip_convolve1d_f(const vsip_conv1d_f *conv, const vsip_vview_f *x, const vsip_vview_f *y);

Description

This function performs one-dimensional convolution between an input signal x and the impulse response (filter kernel)
stored in the convolution object, storing the result in the output vector y. The convolution operation computes:

yn =∑
k

hn · xn−k

where h is the impulse response stored in the convolution object, and x is the input signal.

Parameters

• const vsip_d conv1d_p * conv: Pointer to the 1D convolution object created with vsip_d conv1d_create_p .

• const vsip_d vview_p * x: Input signal vector of length n (as specified when creating the convolution object).

• const vsip_d vview_p * y: Output convolution vector. Its length depends on the support region specified on the
creation of the convolution object:

– VSIP_SUPPORT_FULL: Full convolution. Output length is ⌊(n+m−2)/d⌋+1

– VSIP_SUPPORT_SAME: Same-length output. Output length is ⌊(n−1)/d⌋+1

– VSIP_SUPPORT_MIN: Minimum-length output. Output length is ⌊(n−1)/d⌋−⌊(m−1)/d⌋+1

Notes

• The input vector x must have length n as specified when creating the convolution object.

• The output vector y must have the appropriate length based on the support region (see Parameters section).

• The convolution object can be reused for multiple convolution operations with different input signals.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

183

5.2. CONVOLUTION AND CORRELATION FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.2.5 vsip_d corr1d_create_p - Create 1D Correlation Object
typedef enum _vsip_support_region {

VSIP_SUPPORT_FULL = 0,

VSIP_SUPPORT_SAME = 1,

VSIP_SUPPORT_MIN = 2,

} vsip_support_region;

typedef enum _vsip_alg_hint {

VSIP_ALG_TIME = 0,

VSIP_ALG_SPACE = 1,

VSIP_ALG_NOISE = 2

} vsip_alg_hint;

vsip_corr1d_f* vsip_corr1d_create_f(vsip_length m, vsip_length n, vsip_support_region support, vsip_length ntimes, vsip_alg_hint hint);

vsip_ccorr1d_f* vsip_ccorr1d_create_f(vsip_length m, vsip_length n, vsip_support_region support, vsip_length ntimes, vsip_alg_hint hint);

Description

This function creates a one-dimensional correlation object that can be used to compute the correlation between an input
signal and a reference signal.

The correlation object is optimized for repeated use, allowing efficient computation of correlations between signals of
length m and reference signals of length n.

Parameters

• vsip_length m: Length of the input signal.

• vsip_length n: Length of the reference signal.

• vsip_support_region support: Specifies the support region for the correlation:

– VSIP_SUPPORT_FULL: Compute full correlation. Output length is n+m−1.

– VSIP_SUPPORT_SAME: Compute correlation with same-length output n.

– VSIP_SUPPORT_MIN: Compute minimum-length correlation. Output length is |n−m|−1.

• vsip_length ntimes: Number of times the correlation will be applied.

• vsip_alg_hint hint: Algorithm hint for optimization:

– VSIP_ALG_TIME: Optimize for computation time

– VSIP_ALG_SPACE: Optimize for memory usage

– VSIP_ALG_NOHINT: No specific optimization

Return Value

• On success: Pointer to the newly created 1D correlation object.

• On error (e.g., memory allocation failure): NULL.

Example

vsip_corr1d_f *corr;
vsip_length m = 1024; // Input signal length

vsip_length n = 64; // Reference signal length

vsip_length ntimes = 100; // Number of times to reuse object

// Create correlation object for full correlation

corr = vsip_corr1d_create_f(m, n, VSIP_SUPPORT_FULL, ntimes, VSIP_ALG_TIME);

if (corr == NULL) {

fprintf(stderr, "Error: Could not create correlation object\n");

return -1;

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

184

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.2. CONVOLUTION AND CORRELATION FUNCTIONS

}

// Use the correlation object for your signal processing

// vsip_vview_f *input = vsip_vcreate_f(m, VSIP_MEM_NONE);

// vsip_vview_f *reference = vsip_vcreate_f(n, VSIP_MEM_NONE);

// vsip_vview_f *result = vsip_vcreate_f(m + n - 1, VSIP_MEM_NONE);

//

// vsip_corr1d_f(corr, input, reference, result);

// Clean up when done

vsip_corr1d_destroy_f(corr);

Notes

• The correlation object should be destroyed with vsip_d corr1d_destroy_p when no longer needed.

• The choice of support affects the length of the output correlation vector:

– VSIP_SUPPORT_FULL: Output length is n+m−1

– VSIP_SUPPORT_SAME: Output length is n

– VSIP_SUPPORT_MIN: Output length is |n−m|+1

• The ntimes parameter helps the library optimize memory allocation for repeated use.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

185

5.2. CONVOLUTION AND CORRELATION FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.2.6 vsip_d corr1d_destroy_p - Destroy 1D Correlation Object
int vsip_corr1d_destroy_f(vsip_corr1d_f *cor);
int vsip_ccorr1d_destroy_f(vsip_ccorr1d_f *cor);

Description

This function releases all memory and resources associated with a 1D correlation object that was previously created
with vsip_d corr1d_create_p . It is essential to call this function when you no longer need the correlation object to
prevent memory leaks in your signal processing applications.

Parameters

• vsip_d corr1d_p * cor: Pointer to the 1D correlation object to be destroyed.

Return Value

• Returns 0.

Example

vsip_corr1d_f *corr;
int status;

vsip_length m = 1024; // Input signal length

vsip_length n = 64; // Reference signal length

// Create correlation object

corr = vsip_corr1d_create_f(m, n, VSIP_SUPPORT_FULL, 100, VSIP_ALG_TIME);

if (corr == NULL) {

fprintf(stderr, "Error: Could not create correlation object\n");

return -1;

}

// Use the correlation object for your signal processing

// vsip_vview_f *input = vsip_vcreate_f(m, VSIP_MEM_NONE);

// vsip_vview_f *reference = vsip_vcreate_f(n, VSIP_MEM_NONE);

// vsip_vview_f *result = vsip_vcreate_f(m + n - 1, VSIP_MEM_NONE);

// vsip_corr1d_f(corr, input, reference, result);

// Destroy correlation object when done

vsip_corr1d_destroy_f(corr);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

186

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.2. CONVOLUTION AND CORRELATION FUNCTIONS

5.2.7 vsip_d corr1d_getattr_p - Get 1D Correlation Object Attributes
typedef struct _vsip_corr1d_attr_f {

vsip_scalar_vi ref_len; // Reference length

vsip_scalar_vi data_len; // Data length

vsip_support_region support; // Support type

vsip_scalar_vi lag_len; // Lag length

} vsip_corr1d_attr_f;

/* same for ccorr1d */

typedef vsip_corr1d_attr_f vsip_ccorr1d_attr_f;

void vsip_corr1d_getattr_f(const vsip_corr1d_f *cor, vsip_corr1d_attr_f *attr);

void vsip_ccorr1d_getattr_f(const vsip_ccorr1d_f *cor, vsip_ccorr1d_attr_f *attr);

Description

This function retrieves the attributes of a 1D correlation object and stores them in the provided attribute structure.

Parameters

• const vsip_d corr1d_p * cor: Pointer to the 1D correlation object created with vsip_d corr1d_create_p .

• vsip_d corr1d_attr_p * attr: Pointer to the attribute structure where the correlation object attributes will be
stored.

Example

vsip_corr1d_f *corr;
vsip_corr1d_attr_f attr;

vsip_length m = 1024; // Input signal length

vsip_length n = 64; // Reference signal length

// Create correlation object

corr = vsip_corr1d_create_f(m, n, VSIP_SUPPORT_FULL, 100, VSIP_ALG_TIME);

if (corr == NULL) {

fprintf(stderr, "Error: Could not create correlation object\n");

return;

}

// Get the attributes of the correlation object

vsip_corr1d_getattr_f(corr, &attr);

printf("1D Correlation Object Attributes:\n");

printf(" Ref length: %lu\n", attr.ref_len);

printf(" Data length: %lu\n", attr.data_len);

printf(" Support region: %d\n", attr.support);

printf(" Lag length: %lu\n", attr.lag_len);

// Clean up

vsip_corr1d_destroy_f(corr);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

187

5.2. CONVOLUTION AND CORRELATION FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.2.8 vsip_d correlate1d_p - Compute 1D Correlation
typedef enum _visp_bias {

VSIP_BIASED = 0,

VSIP_UNBIASED = 1

} vsip_bias;

void vsip_correlate1d_f(const vsip_corr1d_f *cor, vsip_bias bias, const vsip_vview_f *h, const vsip_vview_f *x, const vsip_vview_f *y);

void vsip_ccorrelate1d_f(const vsip_ccorr1d_f *cor, vsip_bias bias, const vsip_cvview_f *h, const vsip_cvview_f *x, const vsip_cvview_f *y);

Description

This function computes the one-dimensional correlation between an input signal x and a reference signal h using the
pre-configured correlation object. The result is stored in the output vector y. The correlation operation computes:

yn =∑
k

hk · xn+k

The exact form depends on the support region specified when creating the correlation object and the bias option.

Parameters

• const vsip_d corr1d_p * cor: Pointer to the 1D correlation object created with vsip_d corr1d_create_p .

• vsip_bias bias: Bias option for the correlation:

– VSIP_NOBIAS: No bias applied

– VSIP_BIASED: Bias applied (normalization)

• const vsip_d vview_p * h: Reference signal vector of length n.

• const vsip_d vview_p * x: Input signal vector of length m.

• const vsip_d vview_p * y: Output correlation vector. Its length depends on the support region specified in the
correlation object.

Example

vsip_corr1d_f *corr;
vsip_vview_f *h, *x, *y;

vsip_length m = 1024; // Input signal length

vsip_length n = 64; // Reference signal length

vsip_length y_len; // Output length

// Create correlation object for full correlation

corr = vsip_corr1d_create_f(m, n, VSIP_SUPPORT_FULL, 100, VSIP_ALG_TIME);

if (corr == NULL) {

fprintf(stderr, "Error: Could not create correlation object\n");

return;

}

// Determine output length based on support region

vsip_corr1d_attr_f attr;

vsip_corr1d_getattr_f(corr, &attr);

y_len = (attr.support == VSIP_SUPPORT_FULL) ? m + n - 1 :

(attr.support == VSIP_SUPPORT_SAME) ? m :

abs(m - n) + 1;

// Create vectors

h = vsip_vcreate_f(n, VSIP_MEM_NONE); // Reference signal

x = vsip_vcreate_f(m, VSIP_MEM_NONE); // Input signal

y = vsip_vcreate_f(y_len, VSIP_MEM_NONE); // Output correlation

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

188

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.2. CONVOLUTION AND CORRELATION FUNCTIONS

// Initialize reference and input signals

// vsip_vramp_f(0.0f, 1.0f, h); // Example: linear ramp for reference

// vsip_vramp_f(0.0f, 0.5f, x); // Example: linear ramp for input

// Compute correlation without bias

vsip_correlate1d_f(corr, VSIP_NOBIAS, h, x, y);

// Compute correlation with bias (normalized)

vsip_correlate1d_f(corr, VSIP_BIASED, h, x, y);

// Clean up

vsip_corr1d_destroy_f(corr);

vsip_valldestroy_f(h);

vsip_valldestroy_f(x);

vsip_valldestroy_f(y);

Notes

• The input vectors h and x must have lengths matching those specified when the correlation object was created.

• The output vector y must have the appropriate length based on the support region:

– VSIP_SUPPORT_FULL: n+m−1

– VSIP_SUPPORT_SAME: m

– VSIP_SUPPORT_MIN: |n−m|+1

• The bias option affects the normalization of the result:

– VSIP_NOBIAS: No normalization applied

– VSIP_BIASED: Result is normalized

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

189

5.3. WINDOW FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.3 Window Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

190

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.3. WINDOW FUNCTIONS

5.3.1 vsip_vcreate_blackman_p - Create a Blackman Window Vector
vsip_vview_f* vsip_vcreate_blackman_f(vsip_length n, vsip_memory_hint hint);

Description

This function creates and initializes a vector with coefficients of a Blackman window of length n. The Blackman window
is defined by the formula:

w[k]= 0.42−0.5cos
(

2πk
n−1

)
+0.08cos

(
4πk
n−1

)
, 0≤ k < n

Parameters

• vsip_length n: The length of the window (number of elements in the vector).

• vsip_memory_hint hint: Memory allocation hint that can be used to optimize memory access:

– VSIP_MEM_NONE - No memory hint

– VSIP_MEM_RDONLY - The memory is to be used read-only

– VSIP_MEM_CONST - The memory will hold constants

– VSIP_MEM_SHARED - The memory will be shared

– VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only

– VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

• On success, returns a pointer to the newly created and initialized vector containing the Blackman window coeffi-
cients.

• On error (e.g., if memory allocation fails), returns NULL.

Example

vsip_vview_f *blackman_window;
vsip_length i, n = 64;

// Create a Blackman window of length 64

blackman_window = vsip_vcreate_blackman_f(n, VSIP_MEM_NONE);

if (blackman_window == NULL) {

// Handle error

}

// Print the first 10 coefficients

printf("First 10 Blackman window coefficients:\n");

for (i = 0; i < 10; i++) {

printf("%2ld: %f\n", i, vsip_vget_f(blackman_window, i));

}

// Use the window in a signal processing application

// For example, apply it to a signal vector

vsip_vview_f *signal = vsip_vcreate_f(n, VSIP_MEM_NONE);

vsip_vview_f *windowed_signal = vsip_vcreate_f(n, VSIP_MEM_NONE);

// Initialize signal with some values...

// vsip_vfill_f(signal, 1.0f); // Example: constant signal

// Apply the window: windowed_signal = signal * blackman_window

vsip_vmul_f(signal, blackman_window, windowed_signal);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

191

5.3. WINDOW FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

// Clean up

vsip_valldestroy_f(blackman_window);

vsip_valldestroy_f(signal);

vsip_valldestroy_f(windowed_signal);

Notes

• The window is symmetric for even-length vectors and nearly symmetric for odd-length vectors.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

192

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.3. WINDOW FUNCTIONS

5.3.2 vsip_vcreate_kaiser_p - Create a Kaiser Window Vector
vsip_vview_f* vsip_vcreate_kaiser_f(vsip_length n, vsip_scalar_f beta, vsip_memory_hint hint);

Description

This function creates and initializes a vector with coefficients of a Kaiser window of length n. The Kaiser window is
defined by:

w[k]=
I0

(
β

√
1−

(
2k

n−1 −1
)2

)
I0(β)

, 0≤ k < n

where I0 is the zeroth-order modified Bessel function of the first kind.

Parameters

• vsip_length n: Length of the window (number of elements in the vector).

• vsip_scalar_p beta: Shape parameter that controls the trade-off between main lobe width and side lobe atten-
uation, β.

• vsip_memory_hint hint: Memory allocation hint:

– VSIP_MEM_NONE - No memory hint

– VSIP_MEM_RDONLY - The memory is to be used read-only

– VSIP_MEM_CONST - The memory will hold constants

– VSIP_MEM_SHARED - The memory will be shared

– VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only

– VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

• On success, returns a pointer to the newly created and initialized vector containing the Kaiser window coefficients.

• On error, returns NULL.

Example

vsip_vview_f *kaiser_win;
vsip_length n = 64;

vsip_scalar_f beta = 6.0f; // Moderate side lobe suppression

// Create a Kaiser window

kaiser_win = vsip_vcreate_kaiser_f(n, beta, VSIP_MEM_NONE);

if (kaiser_win == NULL) {

// Handle error

}

// Use the window in an application

// For example, apply it to a signal

vsip_vview_f *signal = vsip_vcreate_f(n, VSIP_MEM_NONE);

vsip_vview_f *windowed_signal = vsip_vcreate_f(n, VSIP_MEM_NONE);

// Initialize signal...

// vsip_vramp_f(0.0f, 1.0f, signal);

// Apply the window

vsip_vmul_f(signal, kaiser_win, windowed_signal);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

193

5.3. WINDOW FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

// Clean up

vsip_valldestroy_f(kaiser_win);

vsip_valldestroy_f(signal);

vsip_valldestroy_f(windowed_signal);

Notes

• The Kaiser window is symmetric for even-length vectors and nearly symmetric for odd-length vectors.

• Common β values and their approximate side lobe attenuations:

– β= 0: Rectangular window (13 dB)

– β= 3: 30 dB side lobe attenuation

– β= 6: 50 dB side lobe attenuation

– β= 8.6: 60 dB side lobe attenuation

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

194

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.3. WINDOW FUNCTIONS

5.3.3 vsip_vcreate_cheby_p - Create a Chebyshev Window Vector
vsip_vview_f* vsip_vcreate_cheby_f(vsip_length n, vsip_scalar_f ripple, vsip_memory_hint hint);

Description

This function creates and initializes a vector with coefficients of a Chebyshev (Dolph-Chebyshev) window of length n.
The Chebyshev window is designed to have equal ripple in the passband and is optimal in the sense that it minimizes
the main lobe width for a given side lobe level.

The ripple parameter specifies the side lobe level in decibels (dB), with typical values ranging from 40 to 120 dB.
Higher ripple values result in better side lobe suppression but wider main lobes.

Parameters

• vsip_length n: Length of the window (number of elements in the vector).

• vsip_scalar_f ripple: Side lobe level in dB (typically 40-120 dB).

• vsip_memory_hint hint: Memory allocation hint:

– VSIP_MEM_NONE - No memory hint
– VSIP_MEM_RDONLY - The memory is to be used read-only
– VSIP_MEM_CONST - The memory will hold constants
– VSIP_MEM_SHARED - The memory will be shared
– VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only
– VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

• On success, returns a pointer to the newly created and initialized vector containing the Chebyshev window coeffi-
cients.

• On error, returns NULL.

Example

vsip_vview_f *cheby_win;
vsip_length n = 64;

vsip_scalar_f ripple = 60.0f; // 60 dB side lobe attenuation

// Create a Chebyshev window

cheby_win = vsip_vcreate_cheby_f(n, ripple, VSIP_MEM_NONE);

if (cheby_win == NULL) {

// Handle error

}

// Use the window in an application

// For example, apply it to a signal

vsip_vview_f *signal = vsip_vcreate_f(n, VSIP_MEM_NONE);

vsip_vview_f *windowed_signal = vsip_vcreate_f(n, VSIP_MEM_NONE);

// Initialize signal...

// vsip_vramp_f(0.0f, 1.0f, signal);

// Apply the window

vsip_vmul_f(signal, cheby_win, windowed_signal);

// Clean up

vsip_vdestroy_f(cheby_win);

vsip_vdestroy_f(signal);

vsip_vdestroy_f(windowed_signal);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

195

5.3. WINDOW FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

Notes

• The Chebyshev window provides the narrowest main lobe for a given side lobe level.

• The window is symmetric for even-length vectors and nearly symmetric for odd-length vectors.

• Common ripple values:

– 40 dB: Moderate side lobe suppression

– 60 dB: Good side lobe suppression

– 80 dB: Excellent side lobe suppression

– 100 dB: Very high side lobe suppression

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

196

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.3. WINDOW FUNCTIONS

5.3.4 vsip_vcreate_hanning_p - Create a Hanning Window Vector
vsip_vview_f* vsip_vcreate_hanning_f(vsip_length n, vsip_memory_hint hint);

Description

This function creates and initializes a vector with coefficients of a Hanning window (also known as Hann window) of
length n. The Hanning window is defined by:

w[k]= 0.5
(
1−cos

(
2πk
n−1

))
, 0≤ k < n

Parameters

• vsip_length n: Length of the window (number of elements in the vector).

• vsip_memory_hint hint: Memory allocation hint:

– VSIP_MEM_NONE - No memory hint

– VSIP_MEM_RDONLY - The memory is to be used read-only

– VSIP_MEM_CONST - The memory will hold constants

– VSIP_MEM_SHARED - The memory will be shared

– VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only

– VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

• On success, returns a pointer to the newly created and initialized vector containing the Hanning window coeffi-
cients.

• On error (e.g., if memory allocation fails), returns NULL.

Example

vsip_vview_f *hanning_win;
vsip_length n = 64;

// Create a Hanning window

hanning_win = vsip_vcreate_hanning_f(n, VSIP_MEM_NONE);

if (hanning_win == NULL) {

// Handle error

}

// Print first 5 coefficients

printf("First 5 Hanning window coefficients:\n");

for (int i = 0; i < 5; i++) {

printf("%f\n", vsip_vget_f(hanning_win, i));

}

// Use the window in a signal processing application

// For example, apply it to a signal vector

vsip_vview_f *signal = vsip_vcreate_f(n, VSIP_MEM_NONE);

vsip_vview_f *windowed_signal = vsip_vcreate_f(n, VSIP_MEM_NONE);

// Initialize signal with some values (e.g., a sine wave)

// vsip_vramp_f(0.0f, 1.0f, signal);

// Apply the window: windowed_signal = signal * hanning_win

vsip_vmul_f(signal, hanning_win, windowed_signal);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

197

5.3. WINDOW FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

// Clean up

vsip_valldestroy_f(hanning_win);

vsip_valldestroy_f(signal);

vsip_valldestroy_f(windowed_signal);

Notes

• The Hanning window is symmetric for even-length vectors and nearly symmetric for odd-length vectors.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

198

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.4. FIR

5.4 FIR

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

199

5.4. FIR CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.4.1 vsip_d fir_create_p - Create a FIR Filter

typedef enum _vsip_symmetry {
VSIP_NONSYM = 0,

VSIP_SYM_EVEN_LEN_ODD = 1,

VSIP_SYM_EVEN_LEN_EVEN = 2

} vsip_symmetry;

typedef enum _vsip_obj_state {

VSIP_STATE_NO_SAVE = 1,

VSIP_STATE_SAVE = 2

} vsip_obj_state;

typedef enum _vsip_alg_hint {

VSIP_ALG_TIME = 0,

VSIP_ALG_SPACE = 1,

VSIP_ALG_NOISE = 2

} vsip_alg_hint;

vsip_fir_f *vsip_fir_create_f(const vsip_vview_f *kernel, vsip_symmetry symm,

vsip_length n, vsip_length d,

vsip_obj_state state,

vsip_length ntimes, vsip_alg_hint hint);

vsip_cfir_f *vsip_cfir_create_f(const vsip_cvview_f *kernel, vsip_symmetry symm,

vsip_length n, vsip_length d,

vsip_obj_state state,

vsip_length ntimes, vsip_alg_hint hint);

Description

This function creates a FIR (Finite Impulse Response) filter with the specified kernel, symmetry, length, decimation
factor, state, number of times to apply the filter, and algorithm hint.

Parameters

• const vsip_d vview_p * kernel: Pointer to the kernel vector view.

• vsip_symmetry symm: Symmetry of the filter kernel.

– VSIP_NOSYM - No symmetry

– VSIP_SYM_EVEN_LEN_ODD - Odd symmetry

– VSIP_SYM_EVEN_LEN_EVEN - Even symmetry

• vsip_length n: Length of the filter.

• vsip_length d: Decimation factor.

• vsip_obj_state state: State of the filter object.

– VSIP_STATE_NO_SAVE - Do not save state

– VSIP_STATE_SAVE - Save state

• vsip_length ntimes: Number of times to apply the filter.

• vsip_alg_hint hint: Algorithm hint for the filter.

– VSIP_ALG_TIME - Optimize for time

– VSIP_ALG_SPACE - Optimize for memory usage

– VSIP_ALG_NOISE - Optimize for noise

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

200

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.4. FIR

Return Value

• On success, a pointer to the newly created FIR filter object is returned.

• On error, NULL is returned.

Example

vsip_vview_f *kernel_view;
vsip_symmetry symm = VSIP_NONSYM;

vsip_length length = 10;

vsip_length decimation = 1;

vsip_obj_state state = VSIP_STATE_SAVE;

vsip_length ntimes = 1;

vsip_alg_hint hint = VSIP_ALG_TIME;

vsip_fir_f *fir_filter;

// Assuming kernel_view has been properly initialized

fir_filter = vsip_fir_create_f(kernel_view, symm, length, decimation, state, ntimes, hint);

if (fir_filter == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

201

5.4. FIR CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.4.2 vsip_d fir_reset_p - Reset a FIR Filter
void vsip_fir_reset_f(vsip_fir_f *filt);
void vsip_cfir_reset_f(vsip_cfir_f *filt);

Description

This function resets the specified FIR filter to its initial state.

Parameters

• vsip_d fir_p * filt: Pointer to the FIR filter to be reset.

Example

vsip_fir_f *fir_filter;

// Assuming fir_filter has been properly initialized

vsip_fir_reset_f(fir_filter);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

202

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.4. FIR

5.4.3 vsip_d fir_getattr_p - Get Attributes of a FIR Filter
typedef struct _vsip_fir_attr_f{

vsip_scalar_vi kernel_len;

vsip_symmetry symm;

vsip_scalar_vi in_len;

vsip_scalar_vi out_len;

vsip_length decimation;

vsip_obj_state state;

} vsip_fir_attr_f;

void vsip_fir_getattr_f(const vsip_fir_f *fir, vsip_fir_attr_f *attr);

void vsip_cfir_getattr_f(const vsip_cfir_f *fir, vsip_cfir_attr_f *attr);

Description

This function retrieves the attributes of the specified FIR filter and stores them in the structure pointed to by attr.

Parameters

• const vsip_d fir_p * fir: Pointer to the FIR filter.

• vsip_d fir_attr_p * attr: Pointer to a structure where the attributes will be stored.

Example

vsip_fir_f *fir_filter;
vsip_fir_attr_f attributes;

// Assuming fir_filter has been properly initialized

vsip_fir_getattr_f(fir_filter, &attributes);

// The attributes of the FIR filter are now stored in 'attributes'

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

203

5.4. FIR CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.4.4 vsip_d firflt_p - Apply a FIR Filter to a Vector View
int vsip_firflt_f(vsip_fir_f *fir, const vsip_vview_f *x, const vsip_vview_f *y);
int vsip_cfirflt_f(vsip_cfir_f *fir, const vsip_cvview_f *x, const vsip_cvview_f *y);

Description

This function applies the specified FIR filter to the input vector view x and stores the result in the output vector view y.

Parameters

• vsip_d fir_p * fir: Pointer to the FIR filter.

• const vsip_d vview_p * x: Pointer to the input vector view.

• const vsip_d vview_p * y: Pointer to the output vector view.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error.

Example

vsip_fir_f *fir_filter;
vsip_vview_f *input_vector;

vsip_vview_f *output_vector;

int result;

// Assuming fir_filter, input_vector, and output_vector have been properly initialized

result = vsip_firflt_f(fir_filter, input_vector, output_vector);

if (result != 0) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

204

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.4. FIR

5.4.5 vsip_d fir_destroy_p - Destroy a FIR Filter
int vsip_fir_destroy_f(vsip_fir_f *filt);
int vsip_cfir_destroy_f(vsip_cfir_f *filt);

Description

This function destroys the specified FIR filter and frees associated resources.

Parameters

• vsip_d fir_p * filt: Pointer to the FIR filter to be destroyed.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error.

Example

vsip_fir_f *fir_filter;
int result;

// Assuming fir_filter has been properly initialized

result = vsip_fir_destroy_f(fir_filter);

if (result != 0) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

205

5.5. MISCELLANEOUS SIGNAL PROCESSING FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.5 Miscellaneous Signal Processing Functions

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

206

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.5. MISCELLANEOUS SIGNAL PROCESSING FUNCTIONS

5.5.1 vsip_vhisto_p - Compute Histogram of a Vector View
typedef enum _vsip_hist_opt {

VSIP_HIST_RESET = 1,

VSIP_HIST_ACCUM = 2

} vsip_hist_opt;

void vsip_vhisto_f(const vsip_vview_f *src, vsip_scalar_f min_bin,

vsip_scalar_f max_bin, vsip_hist_opt opt,

const vsip_vview_f *hist);

Description

This function computes the histogram of the elements in the vector view src and stores the result in the vector view
hist. The histogram is computed over the range [min_bin, max_bin] with the specified binning options opt.

Parameters

• const vsip_vview_p * src: Pointer to the source vector view.

• vsip_scalar_p min_bin: The minimum value of the histogram bins.

• vsip_scalar_p max_bin: The maximum value of the histogram bins.

• vsip_hist_opt opt: Options for histogram computation.

– VSIP_HIST_RESET - Reset histogram and compute new

– VSIP_HIST_ACCUM - Accumulate with previous

• const vsip_vview_f* hist: Pointer to the destination vector view where the histogram will be stored.

Example

vsip_vview_f *src_vector_view;
vsip_scalar_f min_bin = 0.0;

vsip_scalar_f max_bin = 10.0;

vsip_hist_opt hist_options = VSIP_HIST_ACCUM;

vsip_vview_f *hist_vector_view;

// Assuming src_vector_view and hist_vector_view have been properly initialized

vsip_vhisto_f(src_vector_view, min_bin, max_bin, hist_options, hist_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

207

5.5. MISCELLANEOUS SIGNAL PROCESSING FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

208

Chapter 6

Linear Algebra Functions

209

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1 Matrix and Vector Operations

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

210

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

6.1.1 vsip_d vdot_p - Compute the Dot Product of Two Vector Views
vsip_scalar_f vsip_vdot_f(const vsip_vview_f* a, const vsip_vview_f* b);
vsip_cscalar_f vsip_cvdot_f(const vsip_cvview_f* a, const vsip_cvview_f* b);

Description

This function computes the dot product of the vector views a and b and returns it. The dot product is computed as the
sum of the element-wise products of the corresponding elements in the two vectors.

n∑
i

aibi

Parameters

• const vsip_d vview_p * a: Pointer to the first vector view.

• const vsip_d vview_p * b: Pointer to the second vector view.

Return Value

• The dot product of the two vector views.

Example

vsip_cvview_f *complex_vector_a;
vsip_cvview_f *complex_vector_b;

vsip_cscalar_f dot_product;

// Assuming complex_vector_a and complex_vector_b have been properly initialized

dot_product = vsip_cvdot_f(complex_vector_a, complex_vector_b);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

211

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.2 vsip_cvjdot_p - Compute the Conjugate Dot Product of Two Complex Vector Views
vsip_cscalar_f vsip_cvjdot_f(const vsip_cvview_f* a, const vsip_cvview_f* b);

Description

This function computes the conjugate dot product of the complex vector views a and b and returns it. The conjugate dot
product is computed as the sum of the element-wise products of the corresponding elements in the first vector and the
conjugate of the elements in the second vector.

n∑
i

aibi

Parameters

• const vsip_cvview_p * a: Pointer to the first complex vector view.

• const vsip_cvview_p * b: Pointer to the second complex vector view.

Return Value

• The conjugate dot product of the two complex vector views.

Example

vsip_cvview_f *complex_vector_a;
vsip_cvview_f *complex_vector_b;

vsip_cscalar_f conjugate_dot_product;

// Assuming complex_vector_a and complex_vector_b have been properly initialized

conjugate_dot_product = vsip_cvjdot_f(complex_vector_a, complex_vector_b);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

212

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

6.1.3 vsip_d vouter_p - Outer Product of Two Vectors

void vsip_vouter_f(vsip_scalar_f alpha, const vsip_vview_f *x, const vsip_vview_f *y, const vsip_mview_f *r);
void vsip_cvouter_f(vsip_cscalar_f alpha, const vsip_cvview_f *x, const vsip_cvview_f *y, const vsip_cmview_f *r);

Description

This function computes the outer product of two vectors x and y, scaled by α, and stores the result in matrix r. The
outer product is defined as:

r i, j =α · xi · yj

for all i and j, where xi is the i-th element of vector x and yj is the j-th element of vector y.

Parameters

• vsip_d scalar_p alpha: Scalar multiplier for the outer product.

• const vsip_d vview_p * x: Pointer to the first input vector of length m.

• const vsip_d vview_p * y: Pointer to the second input vector of length n.

• const vsip_d mview_p * r: Pointer to the output matrix of size m×n that will store the result.

Example

vsip_vview_f *x, *y;
vsip_mview_f *r;

vsip_length m = 5, n = 4;

// Create vectors and matrix

x = vsip_vcreate_f(m, VSIP_MEM_NONE);

y = vsip_vcreate_f(n, VSIP_MEM_NONE);

r = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);

// Initialize vectors

vsip_vramp_f(1.0f, 1.0f, x); // x = [1, 2, 3, 4, 5]

vsip_vramp_f(0.5f, 0.5f, y); // y = [0.5, 1.0, 1.5, 2.0]

// Compute outer product: r = x * y^T

vsip_vouter_f(1.0f, x, y, r);

// Print the resulting matrix

printf("Outer product result:\n");

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < n; j++) {

printf("%8.2f ", vsip_mget_f(r, i, j));

}

printf("\n");

}

// Compute scaled outer product: r = 2.0 * x * y^T

vsip_vouter_f(2.0f, x, y, r);

// Clean up

vsip_valldestroy_f(x);

vsip_valldestroy_f(y);

vsip_malldestroy_f(r);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

213

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

Notes

• The output matrix r must have dimensions m×n where m is the length of vector x and n is the length of vector y.

• The outer product is not commutative: x⊗ y ̸= y⊗ x.

• If α= 0, the result will be a zero matrix regardless of the input vectors.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

214

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

6.1.4 vsip_d mtrans_p - Matrix Transposition

void vsip_mtrans_f(const vsip_mview_f *a, const vsip_mview_f *c);
void vsip_cmtrans_f(const vsip_cmview_f *a, const vsip_cmview_f *c);

Description

This function computes the transpose of matrix A and stores the result in matrix C. The transpose operation exchanges
the rows and columns of the matrix, such that element ci, j of the output matrix is equal to element a j,i of the input
matrix.

For an m×n input matrix A, the output matrix C must be of size n×m.

Parameters

• const vsip_d mview_p * a: Pointer to the input matrix of size m×n.

• const vsip_d mview_p * c: Pointer to the output matrix of size n×m that will store the transposed result.

Example

vsip_mview_f *A, *C;
vsip_length m = 3, n = 4;

// Create input matrix (3x4)

A = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);

// Initialize matrix A with some values

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < n; j++) {

vsip_mput_f(A, i, j, (float)(i*n + j + 1));

}

}

// Create output matrix (4x3) for the transpose

C = vsip_mcreate_f(n, m, VSIP_ROW, VSIP_MEM_NONE);

// Compute the transpose: C = A^T

vsip_mtrans_f(A, C);

// Print the original and transposed matrices

printf("Original matrix A (%lux%lu):\n", m, n);

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < n; j++) {

printf("%6.1f ", vsip_mget_f(A, i, j));

}

printf("\n");

}

printf("\nTransposed matrix C (%lux%lu):\n", n, m);

for (vsip_index i = 0; i < n; i++) {

for (vsip_index j = 0; j < m; j++) {

printf("%6.1f ", vsip_mget_f(C, i, j));

}

printf("\n");

}

// Clean up

vsip_malldestroy_f(A);

vsip_malldestroy_f(C);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

215

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

Notes

• The output matrix C must have dimensions n×m where the input matrix A has dimensions m×n.

• For in-place transposition (when m = n), consider using vsip_d mtransview_p to create a transposed view.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

216

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

6.1.5 vsip_cmherm_p - Matrix Hermitian
void vsip_cmherm_f(const vsip_cmview_f *a, const vsip_cmview_f *c);

Description

This function computes the hermitian of a complex matrix A and stores the result in matrix C. The Hermitian operation
exchanges the rows and columns of the matrix, such that element ci, j of the output matrix is equal to the conjugate of
element a j,i of the input matrix.

For an m×n input matrix A, the output matrix C must be of size n×m.

Parameters

• const vsip_cmview_p * a: Pointer to the input matrix of size m×n.

• const vsip_cmview_p * c: Pointer to the output matrix of size n×m that will store the Hermitian result.

Notes

• The output matrix C must have dimensions n×m where the input matrix A has dimensions m×n.

• For in-place transposition (when m = n), consider using vsip_d mtransview_p to create a transposed view and
use the conjugate of the elements.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

217

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.6 vsip_d gemp_p - General Matrix Product
typedef enum _vsip_mat_op {

VSIP_MAT_NTRANS = 0, // op(A) = A

VSIP_MAT_TRANS = 1, // op(A) = A^T

VSIP_MAT_HERM = 2, // op(A) = A^H (complex only)

VSIP_MAT_CONJ = 3 // op(X) = A^* (complex only)

} vsip_mat_op;

void vsip_gemp_f(vsip_scalar_f alpha, const vsip_mview_f *a, vsip_mat_op OpA, const vsip_mview_f *b, vsip_mat_op OpB, vsip_scalar_f beta, const vsip_mview_f *r);

void vsip_cgemp_f(vsip_cscalar_f alpha, const vsip_cmview_f *a, vsip_mat_op OpA, const vsip_cmview_f *b, vsip_mat_op OpB, vsip_cscalar_f beta, const vsip_cmview_f *r);

Description

This function performs a generalized matrix-matrix operation of the form:

R =α ·op(A) ·op(B)+β ·R
where op(X) can be X , X T , or X H .

Parameters

• vsip_d scalar_f alpha: Scalar multiplier for the matrix product.

• const vsip_d mview_p * a: First input matrix.

• vsip_mat_op OpA: Operation to perform on matrix A:

– VSIP_MAT_NTRANS: Use A as is

– VSIP_MAT_TRANS: Use the transpose of, AT

– VSIP_MAT_HERM: Use the conjugate transpose of AH

– VSIP_MAT_CONJ: Use the conjugate of A∗

• const vsip_d mview_p * b: Second input matrix.

• vsip_mat_op OpB: Operation to perform on matrix B.

– VSIP_MAT_NTRANS: Use A as is

– VSIP_MAT_TRANS: Use the transpose of, AT

– VSIP_MAT_HERM: Use the conjugate transpose of AH

– VSIP_MAT_CONJ: Use the conjugate of A∗

• vsip_d scalar_p beta: Scalar multiplier for matrix R.

• const vsip_d mview_p * r: Input/output matrix that contains the initial values and will store the result.

Example

vsip_mview_f *A, *B, *R;
vsip_length m = 3, n = 2, p = 4;

// Create matrices

A = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);

B = vsip_mcreate_f(n, p, VSIP_ROW, VSIP_MEM_NONE);

R = vsip_mcreate_f(m, p, VSIP_ROW, VSIP_MEM_NONE);

// Initialize matrices with some values

// Basic matrix multiplication: R = A * B

vsip_gemp_f(1.0f, A, VSIP_MAT_NTRANS, B, VSIP_MAT_NTRANS, 0.0f, R);

// Matrix multiplication with scaling: R = 2.0*A*B + R

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

218

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

vsip_gemp_f(2.0f, A, VSIP_MAT_NTRANS, B, VSIP_MAT_NTRANS, 1.0f, R);

// Transpose operations: R = A^T * B

vsip_gemp_f(1.0f, A, VSIP_MAT_TRANS, B, VSIP_MAT_NTRANS, 0.0f, R);

// Both transposed: R = A^T * B^T

vsip_gemp_f(1.0f, A, VSIP_MAT_TRANS, B, VSIP_MAT_TRANS, 0.0f, R);

// Clean up

vsip_malldestroy_f(A);

vsip_malldestroy_f(B);

vsip_malldestroy_f(R);

Notes

• The dimensions of the matrices must be compatible with the operation:

– If OpA = VSIP_MAT_NTRANS, rows of A must match rows of op(B).

– If OpA = VSIP_MAT_TRANS or VSIP_MAT_HERM, columns of A must match rows of op(B).

• The result matrix R must have dimensions compatible with the operation.

• The operation is not commutative: A ·B ̸= B · A in general.

• Setting β= 0 results in R being overwritten with the matrix product.

• Setting β= 1 results in the matrix product being added to R.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

219

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.7 vsip_d gems_p - General Matrix Scaling and Addition
typedef enum _vsip_mat_op {

VSIP_MAT_NTRANS = 0, // op(A) = A

VSIP_MAT_TRANS = 1, // op(A) = A^T

VSIP_MAT_HERM = 2, // op(A) = A^H (complex only)

VSIP_MAT_CONJ = 3 // op(X) = A^* (complex only)

} vsip_mat_op;

void vsip_gems_f(vsip_scalar_f alpha, const vsip_mview_f *a, vsip_mat_op OpA, vsip_scalar_f beta, const vsip_mview_f *r);

void vsip_cgems_f(vsip_cscalar_f alpha, const vsip_cmview_f *a, vsip_mat_op OpA, vsip_cscalar_f beta, const vsip_cmview_f *r);

Description

This function performs a generalized matrix scaling and addition operation of the form:

R =α ·op(A)+β ·R
where op(A) can be A, AT , or AH .

Parameters

• vsip_d scalar_p alpha: Scalar multiplier for matrix A.

• const vsip_d mview_p * a: Input matrix.

• vsip_mat_op OpA: Operation to perform on matrix A.

– VSIP_MAT_NTRANS: Use A as is

– VSIP_MAT_TRANS: Use the transpose of, AT

– VSIP_MAT_HERM: Use the conjugate transpose of AH

– VSIP_MAT_CONJ: Use the conjugate of A∗

• vsip_d scalar_p beta: Scalar multiplier for matrix R.

• const vsip_d mview_p * r: Input/output matrix that contains the initial values and will store the result.

Example

vsip_mview_f *A, *R;
vsip_length m = 3, n = 3;

// Create matrices

A = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);

R = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);

// Initialize matrices with some values

// Basic scaling: R = 2.0 * A

vsip_gems_f(2.0f, A, VSIP_MAT_NTRANS, 0.0f, R);

// Scale and add: R = 1.5*A + R

vsip_gems_f(1.5f, A, VSIP_MAT_NTRANS, 1.0f, R);

// Transpose operation: R = A^T

vsip_gems_f(1.0f, A, VSIP_MAT_TRANS, 0.0f, R);

// Linear combination: R = 0.5*A + 0.5*R

vsip_gems_f(0.5f, A, VSIP_MAT_NTRANS, 0.5f, R);

// Overwrite with scaled transpose: R = 3.0*A^T

vsip_gems_f(3.0f, A, VSIP_MAT_TRANS, 0.0f, R);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

220

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

// Clean up

vsip_malldestroy_f(A);

vsip_malldestroy_f(R);

Notes

• The dimensions of matrices A and R must be compatible with the operation:

– If OpA = VSIP_MAT_NTRANS, rows of A must match rows of R.

– If OpA = VSIP_MAT_TRANS or VSIP_MAT_HERM, columns of A must match rows of (R).

• This function performs the operation in-place on matrix R.

• Setting β= 0 results in R being overwritten with the scaled matrix.

• Setting β= 1 results in the scaled matrix being added to R.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

221

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.8 vsip_d vmprod_p - Vector-Matrix Product

void vsip_vmprod_f(const vsip_vview_f *a, const vsip_mview_f *b, const vsip_vview_f *r);
void vsip_cvmprod_f(const vsip_cvview_f *a, const vsip_cmview_f *b, const vsip_cvview_f *r);

Description

This function computes the product of a vector and a matrix, storing the result in an output vector. The operation
performed is:

r i =
n∑

j=1
a j ·b j,i

for i = 1,2, . . . ,m, where a is a vector of length n, b is an n×m matrix, and r is the resulting vector of length m.
This operation is equivalent to the matrix-vector product r = aT ·b, where aT is the transpose of vector a.

Parameters

• const vsip_d vview_p * a: Input vector of length n.

• const vsip_d mview_p * b: Input matrix of size n×m.

• const vsip_d vview_p * r: Output vector of length m that will store the result.

Example

vsip_vview_f *a, *r;
vsip_mview_f *b;

vsip_length n = 4, m = 3;

// Create vector and matrices

a = vsip_vcreate_f(n, VSIP_MEM_NONE);

b = vsip_mcreate_f(n, m, VSIP_ROW, VSIP_MEM_NONE);

r = vsip_vcreate_f(m, VSIP_MEM_NONE);

// Initialize vector a and matrix b with some values

vsip_vramp_f(1.0f, 1.0f, a); // a = [1, 2, 3, 4]

// Initialize matrix b (4x3)

for (vsip_index i = 0; i < n; i++) {

for (vsip_index j = 0; j < m; j++) {

vsip_mput_f(b, i, j, (float)(i*m + j + 1));

}

}

// Compute vector-matrix product: r = a^T * b

vsip_vmprod_f(a, b, r);

// Print the result

printf("Result vector r:\n");

for (vsip_index i = 0; i < m; i++) {

printf("%8.2f ", vsip_vget_f(r, i));

}

printf("\n");

// Clean up

vsip_valldestroy_f(a);

vsip_malldestroy_f(b);

vsip_valldestroy_f(r);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

222

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

Notes

• The input vector a must have length n.

• The input matrix b must have dimensions n×m.

• The output vector r must have length m.

• This operation is equivalent to the matrix-vector product r = aT ·b.

• This operation is not commutative: aT ·b ̸= b ·aT .

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

223

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.9 vsip_d mvprod_p - Matrix-Vector Product
void vsip_mvprod_f(const vsip_mview_f *a, const vsip_vview_f *b, const vsip_vview_f *r);
void vsip_cmvprod_f(const vsip_cmview_f *a, const vsip_cvview_f *b, const vsip_cvview_f *r);

Description

This function computes the product of a matrix and a vector, storing the result in an output vector. The operation
performed is:

r i =
n∑

j=1
ai, j ·b j

for i = 1,2, . . . ,m, where a is an m×n matrix, b is a vector of length n, and r is the resulting vector of length m.
This operation is equivalent to the matrix-vector product r = a ·b.

Parameters

• const vsip_d mview_p * a: Input matrix of size m×n.

• const vsip_d vview_p * b: Input vector of length n.

• const vsip_d vview_p * r: Output vector of length m that will store the result.

Example

vsip_mview_f *A;
vsip_vview_f *b, *r;

vsip_length m = 4, n = 3;

// Create matrix and vectors

A = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);

b = vsip_vcreate_f(n, VSIP_MEM_NONE);

r = vsip_vcreate_f(m, VSIP_MEM_NONE);

// Initialize matrix A and vector b with some values

// Initialize A (4x3 matrix)

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < n; j++) {

vsip_mput_f(A, i, j, (float)(i*n + j + 1));

}

}

// Initialize vector b

vsip_vramp_f(1.0f, 1.0f, b); // b = [1, 2, 3]

// Compute matrix-vector product: r = A * b

vsip_mvprod_f(A, b, r);

// Print the result

printf("Matrix A (%lux%lu):\n", m, n);

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < n; j++) {

printf("%8.2f ", vsip_mget_f(A, i, j));

}

printf("\n");

}

printf("\nVector b (%lu):\n", n);

for (vsip_index i = 0; i < n; i++) {

printf("%8.2f ", vsip_vget_f(b, i));

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

224

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

printf("\n");

printf("\nResult vector r (%lu):\n", m);

for (vsip_index i = 0; i < m; i++) {

printf("%8.2f ", vsip_vget_f(r, i));

}

printf("\n");

// Clean up

vsip_malldestroy_f(A);

vsip_valldestroy_f(b);

vsip_valldestroy_f(r);

Notes

• The input matrix a must have dimensions m×n.

• The input vector b must have length n.

• The output vector r must have length m.

• This operation is equivalent to the matrix-vector product r = a ·b.

• If you need to compute bT ·a (vector-matrix product), use vsip_d vmprod_p instead.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

225

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.10 vsip_d mprod_p - Matrix-Matrix Product
void vsip_mprod_f(const vsip_mview_f *a, const vsip_mview_f *b, const vsip_mview_f *r);
void vsip_cmprod_f(const vsip_cmview_f *a, const vsip_cmview_f *b, const vsip_cmview_f *r);

Description

This function computes the matrix product of two matrices A and B, storing the result in matrix R. The operation
performed is:

r i, j =
n∑

k=1
ai,k ·bk, j

for all i and j, where A is an m×n matrix, B is an n× p matrix, and R is the resulting m× p matrix.

Parameters

• const vsip_d mview_p * a: First input matrix of size m×n.

• const vsip_d mview_p * b: Second input matrix of size n× p.

• const vsip_d mview_p * r: Output matrix of size m× p that will store the result.

Example

vsip_mview_f *A, *B, *R;
vsip_length m = 3, n = 2, p = 4;

// Create matrices

A = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);

B = vsip_mcreate_f(n, p, VSIP_ROW, VSIP_MEM_NONE);

R = vsip_mcreate_f(m, p, VSIP_ROW, VSIP_MEM_NONE);

// Initialize matrices A and B with some values

// Initialize matrix A (3x2)

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < n; j++) {

vsip_mput_f(A, i, j, (float)(i*n + j + 1));

}

}

// Initialize matrix B (2x4)

for (vsip_index i = 0; i < n; i++) {

for (vsip_index j = 0; j < p; j++) {

vsip_mput_f(B, i, j, (float)(i*p + j + 1));

}

}

// Compute matrix product: R = A * B

vsip_mprod_f(A, B, R);

// Print the matrices

printf("Matrix A (%lux%lu):\n", m, n);

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < n; j++) {

printf("%8.2f ", vsip_mget_f(A, i, j));

}

printf("\n");

}

printf("\nMatrix B (%lux%lu):\n", n, p);

for (vsip_index i = 0; i < n; i++) {

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

226

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

for (vsip_index j = 0; j < p; j++) {

printf("%8.2f ", vsip_mget_f(B, i, j));

}

printf("\n");

}

printf("\nResult matrix R (%lux%lu):\n", m, p);

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < p; j++) {

printf("%8.2f ", vsip_mget_f(R, i, j));

}

printf("\n");

}

// Clean up

vsip_malldestroy_f(A);

vsip_malldestroy_f(B);

vsip_malldestroy_f(R);

Notes

• The input matrices must have compatible dimensions: A must be m×n and B must be n× p.

• The output matrix R must have dimensions m× p.

• The matrix product is not commutative: A ·B ̸= B · A in general.

• If you need to compute AT ·B or other variants, consider using vsip_d gemp_p instead.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

227

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.11 vsip_d mprodt_p - Matrix-Matrix Product with Transposition
void vsip_mprodt_f(const vsip_mview_f *a, const vsip_mview_f *b, const vsip_mview_f *r);
void vsip_cmprodt_f(const vsip_cmview_f *a, const vsip_cmview_f *b, const vsip_cmview_f *r);

Description

This function computes the product of matrix A and the transpose of matrix B, storing the result in matrix R. The
operation performed is:

r i, j =
n∑

k=1
ai,k ·b j,k

for all i and j, where A is an m×n matrix, B is an p×n matrix, and R is the resulting m× p matrix.
This operation is equivalent to the matrix product R = A ·BT .

Parameters

• const vsip_d mview_p * a: First input matrix of size m×n.

• const vsip_d mview_p * b: Second input matrix of size p×n (will be transposed in the operation).

• const vsip_d mview_p * r: Output matrix of size m× p that will store the result.

Example

vsip_mview_f *A, *B, *R;
vsip_length m = 3, n = 4, p = 2;

// Create matrices

A = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE); // 3x4 matrix

B = vsip_mcreate_f(p, n, VSIP_ROW, VSIP_MEM_NONE); // 2x4 matrix

R = vsip_mcreate_f(m, p, VSIP_ROW, VSIP_MEM_NONE); // 3x2 result matrix

// Initialize matrices A and B with some values

// Initialize matrix A (3x4)

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < n; j++) {

vsip_mput_f(A, i, j, (float)(i*n + j + 1));

}

}

// Initialize matrix B (2x4)

for (vsip_index i = 0; i < p; i++) {

for (vsip_index j = 0; j < n; j++) {

vsip_mput_f(B, i, j, (float)(i*n + j + 1));

}

}

// Compute matrix product with transposition: R = A * B^T

vsip_mprodt_f(A, B, R);

// Print the matrices

printf("Matrix A (%lux%lu):\n", m, n);

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < n; j++) {

printf("%8.2f ", vsip_mget_f(A, i, j));

}

printf("\n");

}

printf("\nMatrix B (%lux%lu):\n", p, n);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

228

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

for (vsip_index i = 0; i < p; i++) {

for (vsip_index j = 0; j < n; j++) {

printf("%8.2f ", vsip_mget_f(B, i, j));

}

printf("\n");

}

printf("\nResult matrix R = A * B^T (%lux%lu):\n", m, p);

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < p; j++) {

printf("%8.2f ", vsip_mget_f(R, i, j));

}

printf("\n");

}

// Clean up

vsip_malldestroy_f(A);

vsip_malldestroy_f(B);

vsip_malldestroy_f(R);

Notes

• The input matrices must have compatible dimensions: Both A and B must have the same number of columns (n).

• The output matrix R must have dimensions m× p, where m is the number of rows in A and p is the number of
rows in B.

• This operation is equivalent to computing the covariance matrix when A and B contain centered data.

• If you need more flexibility in choosing which matrix to transpose, consider using vsip_d gemp_p instead.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

229

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.12 vsip_cmprodh_p - Complex Matrix Product with Hermitian Transpose
void vsip_cmprodh_f(const vsip_cmview_f *a, const vsip_cmview_f *b, const vsip_cmview_f *r);

Description

This function computes the product of a complex matrix A with the Hermitian transpose of a complex matrix B, storing
the result in complex matrix R. The operation performed is:

r i, j =
n∑

k=1
ai,k ·b j,k

for all i and j, where A is an m×n complex matrix, B is a p×n complex matrix, and R is the resulting m×p complex
matrix. b j,k denotes the complex conjugate of b j,k.

Parameters

• const vsip_cmview_p * a: First input matrix of size m×n (complex).

• const vsip_cmview_p * b: Second input matrix of size p× n (complex), which will be Hermitian transposed in
the operation.

• const vsip_cmview_p * r: Output matrix of size m× p (complex) that will store the result.

Example

vsip_cmview_f *A, *B, *R;
vsip_length m = 2, n = 3, p = 2;

// Create complex matrices

A = vsip_cmcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);

B = vsip_cmcreate_f(p, n, VSIP_ROW, VSIP_MEM_NONE);

R = vsip_cmcreate_f(m, p, VSIP_ROW, VSIP_MEM_NONE);

// Initialize matrices A and B with complex values

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < n; j++) {

vsip_cscalar_f val = VSIP_CMPLX_F(i*n + j + 1, -(i*n + j + 1));

vsip_cmput_f(A, i, j, val);

}

}

for (vsip_index i = 0; i < p; i++) {

for (vsip_index j = 0; j < n; j++) {

vsip_cscalar_f val = VSIP_CMPLX_F(i*n + j + 1, i*n + j + 2);

vsip_cmput_f(B, i, j, val);

}

}

// Compute matrix product with Hermitian transpose: R = A * B^H

vsip_cmprodh_f(A, B, R);

// Print the result

printf("Result matrix R = A * B^H (%lux%lu):\n", m, p);

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < p; j++) {

vsip_cscalar_f val = vsip_cmget_f(R, i, j);

printf("(%.2f%+.2fi) ", val.r, val.i);

}

printf("\n");

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

230

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

// Clean up

vsip_cmalldestroy_f(A);

vsip_cmalldestroy_f(B);

vsip_cmalldestroy_f(R);

Notes

• The input matrices must have compatible dimensions: Both matrices A and B must have the same number of
columns (n).

• The output matrix R must have dimensions m× p, where m is the number of rows in A and p is the number of
rows in B.

• If you need more flexibility in choosing which matrix to transpose, consider using vsip_cgemp_p instead.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

231

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.13 vsip_cmprodj_p - Complex Matrix Product with Conjugate
void vsip_cmprodj_f(const vsip_cmview_f *a, const vsip_cmview_f *b, const vsip_cmview_f *r);

Description

This function computes the product of a complex matrix A with the element-wise conjugate of a complex matrix B,
storing the result in complex matrix R. The operation performed is:

r i, j =
n∑

k=1
ai,k ·bk, j

for all i and j, where A is an m× n complex matrix, B is an n× p complex matrix, and R is the resulting m× p
complex matrix. bk, j denotes the complex conjugate of bk, j.

Parameters

• const vsip_cmview_p * a: First input matrix of size m×n (complex).

• const vsip_cmview_p * b: Second input matrix of size n× p (complex), whose elements will be conjugated in the
operation.

• const vsip_cmview_p * r: Output matrix of size m× p (complex) that will store the result.

Example

vsip_cmview_f *A, *B, *R;
vsip_length m = 2, n = 3, p = 2;

// Create complex matrices

A = vsip_cmcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);

B = vsip_cmcreate_f(n, p, VSIP_ROW, VSIP_MEM_NONE);

R = vsip_cmcreate_f(m, p, VSIP_ROW, VSIP_MEM_NONE);

// Initialize matrices A and B with complex values

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < n; j++) {

vsip_cscalar_f val = VSIP_CMPLX_F(i*n + j + 1, -(i*n + j + 1));

vsip_cmput_f(A, i, j, val);

}

}

for (vsip_index i = 0; i < n; i++) {

for (vsip_index j = 0; j < p; j++) {

vsip_cscalar_f val = VSIP_CMPLX_F(i*p + j + 1, i*p + j + 2);

vsip_cmput_f(B, i, j, val);

}

}

// Compute matrix product with conjugate: R = A * conj(B)

vsip_cmprodj_f(A, B, R);

// Print the result

printf("Result matrix R = A * conj(B) (%lux%lu):\n", m, p);

for (vsip_index i = 0; i < m; i++) {

for (vsip_index j = 0; j < p; j++) {

vsip_cscalar_f val = vsip_cmget_f(R, i, j);

printf("(%.2f%+.2fi) ", val.r, val.i);

}

printf("\n");

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

232

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

// Clean up

vsip_cmalldestroy_f(A);

vsip_cmalldestroy_f(B);

vsip_cmalldestroy_f(R);

Notes

• The input matrices must have compatible dimensions: A must be m×n and B must be n× p.

• The output matrix R must have dimensions m× p.

• This operation is different from vsip_cmprodh_p which uses the Hermitian transpose of the second matrix.

• The element-wise conjugation of B affects only the imaginary parts of its elements, changing their sign.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

233

6.2. SPECIAL LINEAR SOLVERS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.2 Special Linear Solvers

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

234

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.2. SPECIAL LINEAR SOLVERS

6.2.1 vsip_d toepsol_p - Solve a Toeplitz System of Equations
int vsip_toepsol_f(const vsip_vview_f* t, const vsip_vview_f* r, const vsip_vview_f* b, const vsip_vview_f* x);
int vsip_ctoepsol_f(const vsip_cvview_f* t, const vsip_cvview_f* r, const vsip_cvview_f* b, const vsip_cvview_f* x);

Description

This function solves a real Toeplitz system of linear equations Tx = b, where T is a symmetric Toeplitz matrix defined
by its first column t and first row r, b is the right-hand side vector, and x is the solution vector. The Toeplitz matrix has
constant diagonals, with the first column t and first row r defining the matrix structure.

Parameters

• const vsip_d vview_p * t: Pointer to the vector view containing the first column of the Toeplitz matrix.

• const vsip_d vview_p * r: Pointer to the vector view containing the first row of the Toeplitz matrix.

• const vsip_d vview_p * b: Pointer to the vector view containing the right-hand side vector.

• const vsip_d vview_p * x: Pointer to the vector view where the solution will be stored.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error (e.g., if the Toeplitz matrix is singular).

Example

vsip_vview_f *toeplitz_col;
vsip_vview_f *toeplitz_row;

vsip_vview_f *rhs_vector;

vsip_vview_f *solution_vector;

int result;

// Assuming all vector views have been properly initialized

result = vsip_toepsol_f(toeplitz_col, toeplitz_row, rhs_vector, solution_vector);

if (result != 0) {

// Handle error (e.g., singular matrix)

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

235

6.2. SPECIAL LINEAR SOLVERS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.2.2 vsip_d covsol_p - Solve a Covariance System of Equations
int vsip_covsol_f(const vsip_vview_f* r, const vsip_vview_f* b, const vsip_vview_f* x);
int vsip_ccovsol_f(const vsip_cvview_f* r, const vsip_cvview_f* b, const vsip_cvview_f* x);

Description

This function solves a covariance system of linear equations Tx = b, where T is a symmetric positive definite Toeplitz
covariance matrix defined by its first column r, b is the right-hand side vector, and x is the solution vector. The covariance
matrix is a special type of Toeplitz matrix where the first column r completely defines the matrix structure.

This function is particularly useful in signal processing applications such as linear prediction and Wiener filtering,
where covariance matrices frequently appear.

Parameters

• const vsip_d vview_p * r: Pointer to the vector view containing the first column of the covariance matrix (auto-
correlation sequence). The length of this vector determines the size of the covariance matrix.

• const vsip_d vview_p * b: Pointer to the vector view containing the right-hand side vector.

• const vsip_d vview_p * x: Pointer to the vector view where the solution will be stored.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error (e.g., if the covariance matrix is singular or not positive definite).

Example

vsip_vview_f *covariance_vector;
vsip_vview_f *rhs_vector;

vsip_vview_f *solution_vector;

int result;

// Assuming all vector views have been properly initialized

// and covariance_vector contains the autocorrelation sequence

result = vsip_covsol_f(covariance_vector, rhs_vector, solution_vector);

if (result != 0) {

// Handle error (e.g., singular or non-positive definite matrix)

}

Notes

• The covariance matrix is assumed to be symmetric and positive definite.

• The length of the covariance vector r should be one more than the length of vectors b and x.

• This function uses a Levinson-Durbin recursion algorithm for efficient solution of the covariance system.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

236

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.2. SPECIAL LINEAR SOLVERS

6.2.3 vsip_d llsqsol_p - Solve Linear Least Squares Problem
int vsip_llsqsol_f(const vsip_mview_f* A, const vsip_vview_f* b, const vsip_vview_f* x);
int vsip_cllsqsol_f(const vsip_cmview_f* A, const vsip_cvview_f* b, const vsip_cvview_f* x);

Description

This function solves the linear least squares problem:

min
x

∥Ax−b∥2

where A is an M×N matrix with M ≥ N, b is an M-dimensional vector, and x is the N-dimensional solution vector that
minimizes the Euclidean norm of the residual vector.

The function uses QR decomposition with column pivoting to solve the least squares problem, which provides a
numerically stable solution even when matrix A is rank-deficient.

Parameters

• const vsip_d mview_p * A: Pointer to the M×N matrix view of coefficients.

• const vsip_d vview_p * b: Pointer to the M-dimensional vector view containing the right-hand side.

• const vsip_d vview_p * x: Pointer to the N-dimensional vector view where the least squares solution will be
stored.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error (e.g., if matrix dimensions are incompatible or memory allocation fails).

Example

vsip_mview_f *A; // MÖN coefficient matrix

vsip_vview_f *b; // M-dimensional right-hand side vector

vsip_vview_f *x; // N-dimensional solution vector

int result;

// Assuming A, b, and x have been properly initialized with appropriate dimensions

result = vsip_llsqsol_f(A, b, x);

if (result != 0) {

// Handle error

}

Notes

• The number of rows M in matrix A must be greater than or equal to the number of columns N.

• The solution x minimizes the 2-norm of the residual vector Ax−b.

• If A has full column rank, the solution is unique. If A is rank-deficient, the function returns a basic solution with
at most rank(A) non-zero components.

• This function is particularly useful for overdetermined systems where there is no exact solution, but a best-fit
solution is desired.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

237

6.3. GENERAL LINEAR SQUARE SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.3 General Linear Square System Solver

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

238

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.3. GENERAL LINEAR SQUARE SYSTEM SOLVER

6.3.1 vsip_d lud_create_p - Create LU Decomposition Object
vsip_lu_f* vsip_lud_create_f(vsip_length n);
vsip_clu_f* vsip_clud_create_f(vsip_length n);

Description

This function creates an LU decomposition object for factoring an n× n matrix into the product of a lower triangular
matrix L and an upper triangular matrix U . The object can be reused for multiple decompositions of matrices with the
same dimensions.

Parameters

• vsip_length n: Number of rows and columns in the matrix to be decomposed.

Return Value

• On success, a pointer to the newly created LU decomposition object is returned.

• On error, NULL is returned.

Example

vsip_lu_f *lu_obj;
vsip_length n = 100;

// Create LU decomposition object

lu_obj = vsip_lud_create_f(n);

if (lu_obj == NULL) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

239

6.3. GENERAL LINEAR SQUARE SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.3.2 vsip_d lud_destroy_p - Destroy LU Decomposition Object
int vsip_lud_destroy_f(vsip_lu_f *lu);
int vsip_clud_destroy_f(vsip_clu_f *lu);

Description

This function destroys an LU decomposition object and frees all associated resources.

Parameters

• vsip_d lu_fp * lu: Pointer to the LU decomposition object to be destroyed.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error.

Example

vsip_lu_f *lu_obj;
int result;

// Assuming lu_obj has been properly initialized

result = vsip_lud_destroy_f(lu_obj);

if (result != 0) {

// Handle error

}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

240

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.3. GENERAL LINEAR SQUARE SYSTEM SOLVER

6.3.3 vsip_d lud_getattr_p - Get LU Decomposition Attributes
typedef struct _vsip_lu_attr_g {

vsip_length n;

} vsip_lu_attr_g;

typedef vsip_lu_attr_g vsip_lu_attr_f;

typedef vsip_lu_attr_g vsip_clu_attr_f;

void vsip_lud_getattr_f(const vsip_lu_f *lu, vsip_lu_attr_f *attr);

void vsip_clud_getattr_f(const vsip_clu_f *lu, vsip_lu_cattr_f *attr);

Description

This function retrieves the attributes of an LU decomposition object, this currently includes a single attribute called n

for the row and column element count of the square matrix.

Parameters

• const vsip_d lu_p * lu: Pointer to the LU decomposition object.

• vsip_lu_d attr_p * attr: Pointer to a structure where the attributes will be stored.

Example

vsip_lu_f *lu_obj;
vsip_lu_attr_f attr;

// Assuming lu_obj has been properly initialized

vsip_lud_getattr_f(lu_obj, &attr);

// attr.n - Number of rows and columns of the square matrix

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

241

6.3. GENERAL LINEAR SQUARE SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.3.4 vsip_d lud_p - Perform LU Decomposition
int vsip_lud_f(const vsip_lu_f* lud, const vsip_mview_f* A);
int vsip_clud_f(const vsip_clu_f* lud, const vsip_cmview_f* A);

Description

This function performs LU decomposition of matrix A using the pre-allocated LU decomposition object lud. The decom-
position computes:

A = PLU

where:

• P is a permutation matrix

• L is a unit lower triangular matrix

• U is an upper triangular matrix

The function uses partial pivoting for numerical stability. The decomposed factors are stored within the LU decom-
position object and can be used for subsequent operations like solving linear systems.

Parameters

• const vsip_d lu_p * lud: Pointer to the LU decomposition object created by vsip_lud_create_p .

• const vsip_d mview_p * A: Pointer to the n×n matrix view to be decomposed.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error (e.g., if the matrix is singular or dimensions don’t match the LU object).

Example

vsip_lu_f *lu_obj;
vsip_mview_f *matrix_A;

int result;

// Assuming lu_obj and matrix_A have been properly initialized

// with matching dimensions

result = vsip_lud_f(lu_obj, matrix_A);

if (result != 0) {

// Handle error (e.g., singular matrix)

}

Notes

• The input matrix A must have full rank.

• The input matrix A must have the same dimensions as specified when creating the LU decomposition object.

• The contents of matrix A may be overwritten and must not be modified as long as factorization is required.

• The decomposed factors L and U are stored within the LU decomposition object and can be accessed through other
VSIPL functions.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

242

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.3. GENERAL LINEAR SQUARE SYSTEM SOLVER

6.3.5 vsip_d lusol_p - Solve Linear System Using LU Decomposition
int vsip_lusol_f(const vsip_lu_f* lud, const vsip_vview_f* b, const vsip_vview_f* x);
int vsip_clusol_f(const vsip_clu_f* lud, const vsip_cvview_f* b, const vsip_cvview_f* x);

Description

This function solves a system a linear square system int the forms of:

AX=B

ATX=B

AHX=B

Where the matrix A has previously been decomposed using the function vsip_d lud_p . Whether the matrix A is
transposed depends on the given argument provided.

Parameters

• const vsip_d lu_f* lud: Pointer to the LU decomposition object containing the decomposed factors of matrix A.

• vsip_mat_op OpA: Operand for the input matrix A.

– VSIP_MAT_NTRANS - Do not transpose.

– VSIP_MAT_TRANS - Transpose.

– VSIP_MAT_HERM - Hermitian (Complex only).

• const vsip_d mview_f* xb: Pointer to the right-hand side matrix B of order n by k. On exit result matrix X .

Return Value

• Returns 0 on success.

• Returns a non-zero value on error (e.g., if dimensions are incompatible or the matrix is singular).

Example

vsip_lu_f *lu_obj;
vsip_mview_f *a, *xb;

// Assuming all objects have been properly initialized

// First perform LU decomposition

result = vsip_lud_f(lu_obj, a);

if (result != 0) {

// Handle decomposition error

}

// Then solve the linear system

result = vsip_lusol_f(lu_obj, VSIP_MAT_NTRANS, xb);

if (result != 0) {

// Handle solve error

}

Notes

• The LU decomposition object must have been previously created and used to decompose a matrix.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

243

6.4. SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM SOLVERCHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.4 Symmetric Positive Definite Linear System Solver

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

244

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS6.4. SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM SOLVER

6.4.1 vsip_d chold_create_p - Create Cholesky Decomposition Object
typedef enum _vsip_mat_uplo {

VSIP_TR_LOW = 0, // Lower triangular

VSIP_TR_UPP = 1 // Upper triangular

} vsip_mat_uplo;

vsip_chol_f* vsip_chold_create_f(vsip_mat_uplo uplo, vsip_length n);

vsip_cchol_f* vsip_cchold_create_f(vsip_mat_uplo uplo, vsip_length n);

Description

This function creates a Cholesky decomposition object for a symmetric positive definite matrix of size n×n. The Cholesky
decomposition expresses a matrix A as the product of a lower triangular matrix L and its transpose: A = LLT (when
uplo = VSIP_MAT_LOWER) or A =UTU (when uplo = VSIP_MAT_UPPER).

Parameters

• vsip_mat_uplo uplo: Specifies whether to store the upper (VSIP_MAT_UPP) or lower (VSIP_MAT_LOW) triangle of
the matrix.

• vsip_length n: The dimension of the square matrix (n×n).

Return Value

• On success: Pointer to the newly created Cholesky decomposition object

• On error (e.g., memory allocation failure): NULL

Example

vsip_chol_f *chold;
vsip_length n = 100;

// Create Cholesky decomposition object for lower triangle

chold = vsip_chold_create_f(VSIP_MAT_LOW, n);

if (chold == NULL) {

fprintf(stderr, "Error: Could not create Cholesky object\n");

return -1;

}

Notes

• The matrix must be symmetric and positive definite, otherwise the decomposition will fail.

• The object should be freed with vsip_d chold_destroy_p when no longer needed.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

245

6.4. SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM SOLVERCHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.4.2 vsip_d chold_destroy_p - Destroy Cholesky Decomposition Object
int vsip_chold_destroy_f(vsip_chol_f *chold);
int vsip_cchold_destroy_f(vsip_cchol_f *chold);

Description

This function releases the memory allocated for a Cholesky decomposition object.

Parameters

• vsip_d chol_p * chold: Pointer to the Cholesky decomposition object to be destroyed.

Return Value

• Returns 0

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

246

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS6.4. SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM SOLVER

6.4.3 vsip_d chold_getattr_p - Get Cholesky Decomposition Attributes
typedef struct _vsip_chol_attr_f {

vsip_length n;

vsip_mat_uplo uplo;

} vsip_chol_attr_f;

typedef vsip_chol_attr_f vsip_cchol_attr_f;

void vsip_chold_getattr_f(const vsip_chol_f *chold, vsip_chol_attr_f *attr);

void vsip_cchold_getattr_f(const vsip_cchol_f *chold, vsip_cchol_attr_f *attr);

Description

This function retrieves the attributes of a Cholesky decomposition object and stores them in the provided structure.

Parameters

• const vsip_d chol_p * chold: Pointer to the Cholesky decomposition object.

• vsip_d chol_attr_p * attr: Pointer to the structure where attributes will be stored.

Example

vsip_chol_f *chold;
vsip_chol_attr_f attr;

// Create object

chold = vsip_chold_create_f(VSIP_MAT_LOW, 100);

// Get attributes

vsip_chold_getattr_f(chold, &attr);

printf("Cholesky decomposition attributes:\n");

printf(" Matrix size: %lu x %lu\n", attr.n, attr.n);

printf(" Stored triangle: %s\n",

attr.uplo == VSIP_MAT_LOW ? "lower" : "upper");

// Destroy object

vsip_chold_destroy_f(chold);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

247

6.4. SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM SOLVERCHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.4.4 vsip_d chold_p - Perform Cholesky Decomposition
int vsip_chold_f(vsip_chol_f *chold, const vsip_mview_f *a);
int vsip_cchold_f(vsip_cchol_f *chold, const vsip_cmview_f *a);

Description

This function performs the Cholesky decomposition of a symmetric positive definite matrix A using the provided Cholesky
decomposition object. The decomposition expresses A as the product of a triangular matrix and its transpose:

When uplo = VSIP_MAT_LOW:
A = LLT

A = LLH

When uplo = VSIP_MAT_UPP:
A =UTU

A =UHU

Where L is a lower triangular matrix and U is an upper triangular matrix.

Parameters

• vsip_d chol_p * chold: Pointer to the Cholesky decomposition object created with vsip_d chold_create_p .

• const vsip_d mview_p * a: Pointer to the input matrix to be decomposed. The matrix must be symmetric positive
definite and have dimensions matching those specified when the Cholesky object was created.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error (e.g., if the matrix is not positive definite or dimensions don’t match).

Notes

• The input matrix A must be symmetric and positive definite. The function will fail if the matrix is not positive
definite.

• The matrix dimensions must match those specified when the Cholesky object was created.

• The decomposition overwrites the contents of the Cholesky object with the new decomposition.

• The Cholesky object can be reused for multiple decompositions by calling this function multiple times with differ-
ent input matrices (as long as they have the same dimensions).

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

248

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS6.4. SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM SOLVER

6.4.5 vsip_d cholsol_p - Solve Linear Systems Using Cholesky Decomposition
int vsip_cholsol_f(const vsip_chol_f *chold, const vsip_mview_f *a);
int vsip_ccholsol_f(const vsip_cchol_f *chold, const vsip_cmview_f *a);

Description

This function solves linear systems of equations using a previously computed Cholesky decomposition. It solves the
system AX = B where A is a symmetric positive definite matrix that has been decomposed using vsip_d chold_p .

The function uses the Cholesky decomposition A = LLT (or A =UTU , A =UHU) to efficiently solve the linear system
by performing forward and backward substitution on the triangular factors.

Parameters

• const vsip_d chol_p * chold: Pointer to the Cholesky decomposition object containing a previously computed
decomposition.

• const vsip_d mview_p * a: On input, contains the right-hand side matrix B. On output, contains the solution
matrix X . The matrix should have dimensions n×k where A is n×n and k is the number of right-hand sides.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error

Notes

• The Cholesky decomposition must have been previously computed using vsip_d chold_p .

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

249

6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.5 Over-determined Linear System Solver

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

250

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER

6.5.1 vsip_d qrd_create_p - Create QR Decomposition Object
typedef enum _vsip_qrd_qopt {

VSIP_QRD_NOSAVEQ = 0, // Do not save Q

VSIP_QRD_SAVEQ = 1, // Save full Q

VSIP_QRD_SAVEQ1 = 2 // Save skinny Q

} vsip_qrd_qopt;

vsip_qr_f* vsip_qrd_create_f(vsip_length m, vsip_length n, vsip_qrd_qopt qopt);

vsip_cqr_f* vsip_cqrd_create_f(vsip_length m, vsip_length n, vsip_qrd_qopt qopt);

Description

This function creates a QR decomposition object that can be used to compute the QR factorization of an m×n matrix.
The QR decomposition expresses a matrix A as the product of an orthogonal matrix Q and an upper triangular matrix
R, such that A =QR.

The vsip_qrd_qopt parameter allows you to specify how the orthogonal matrix Q should be stored.

Parameters

• vsip_length m: Number of rows in the matrix to be decomposed.

• vsip_length n: Number of columns in the matrix to be decomposed.

• vsip_qrd_qopt qopt: Option specifying how the Q matrix should be saved:

– VSIP_QRD_NOSAVEQ: Don’t save Q (only compute R)

– VSIP_QRD_SAVEQ1: Save essential parts of Q (more memory efficient)

– VSIP_QRD_SAVEQ: Save full Q matrix

Return Value

• On success, returns a pointer to the newly created QR decomposition object.

• On error (e.g., if memory allocation fails), returns NULL.

Example

vsip_qr_f *qrd;
vsip_length m = 100, n = 50;

// Create a QR decomposition object

// Using SAVEQ2 as a good compromise between memory and functionality

qrd = vsip_qrd_create_f(m, n, VSIP_QRD_SAVEQ2);

if (qrd == NULL) {

fprintf(stderr, "Failed to create QR decomposition object\n");

return;

}

Notes

• The QR decomposition object must be destroyed with vsip_d qrd_destroy_p when no longer needed.

• The choice of qopt affects both memory usage and the operations that can be performed with the decomposition:

– VSIP_QRD_SAVEQ allows full access to Q but uses more memory

– VSIP_QRD_SAVEQ1 is a good compromise for most applications

– VSIP_QRD_NOSAVEQ is most memory efficient but only allows operations with R

• For square matrices (m = n), the QR decomposition can be used to compute determinants and inverses.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

251

6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

• For tall matrices (m > n), the decomposition is useful for least squares problems.

• This function allocates internal storage for the decomposition, which is freed when the QR object is destroyed.

• For repeated decompositions of matrices with the same dimensions, you can reuse the QR object by calling
vsip_d qrd_p multiple times with the same object.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

252

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER

6.5.2 vsip_d qrd_destroy_p - Destroy QR Decomposition Object
int vsip_qrd_destroy_f(vsip_qr_f *qrd);
int vsip_cqrd_destroy_f(vsip_cqr_f *qrd);

Description

This function releases the memory allocated for a QR decomposition object and destroys it.

Parameters

• vsip_d qr_p * qrd: Pointer to the QR decomposition object to be destroyed, which was previously created with
vsip_d qrd_create_p .

Return Value

• Returns 0.

Example

vsip_qr_f *qrd;
vsip_mview_f *A;

vsip_length m = 100, n = 50;

// Create QR decomposition object

qrd = vsip_qrd_create_f(m, n, VSIP_QRD_SAVEQ);

if (qrd == NULL) {

fprintf(stderr, "Error: Could not create QR object\n");

return -1;

}

status = vsip_qrd_destroy_f(qrd);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

253

6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.5.3 vsip_d qrd_getattr_p - Get QR Decomposition Attributes
typedef struct _vsip_qr_attr_f {

vsip_length n;

vsip_length m;

vsip_qrd_qopt Qopt;

} vsip_qr_attr_f;

typedef vsip_qr_attr_f vsip_cqr_attr_f;

void vsip_qrd_getattr_f(const vsip_qr_f *qrd, vsip_qr_attr_f *attr);

void vsip_cqrd_getattr_f(const vsip_cqr_f *qrd, vsip_cqr_attr_f *attr);

Description

This function retrieves the attributes of a QR decomposition object and stores them in a vsip_d qr_attr_p structure.
The attributes provide complete information about the QR decomposition, including the dimensions of the original
matrix and the options used during creation.

Parameters

• const vsip_d qr_p * qrd: Pointer to the QR decomposition object.

• vsip_d qr_attr_p * attr: Pointer to the attribute structure where the QR decomposition attributes will be
stored.

Example

vsip_qr_f *qrd;
vsip_qr_attr_f attr;

vsip_length m = 100, n = 50;

// Create a QR decomposition object

qrd = vsip_qrd_create_f(m, n, VSIP_QRD_SAVEQ);

if (qrd == NULL) {

// Handle error

}

// Get the attributes of the QR decomposition object

vsip_qrd_getattr_f(qrd, &attr);

printf("QR decomposition attributes:\n");

printf(" Matrix dimensions: %lu x %lu\n", attr.m, attr.n);

printf(" QR option: %d\n", attr.qopt);

vsip_qrd_destroy_f(qrd);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

254

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER

6.5.4 vsip_d qrd_p - Perform QR Decomposition
int vsip_qrd_f(vsip_qr_f *qrd, const vsip_mview_f *a);
int vsip_cqrd_f(vsip_cqr_f *qrd, const vsip_cmview_f *a);

Description

This function performs the QR decomposition of matrix A using the provided QR decomposition object. The QR decom-
position expresses matrix A as the product of an orthogonal matrix Q and an upper triangular matrix R, such that
A =QR.

Parameters

• vsip_d qr_p * qrd: Pointer to the QR decomposition object created with vsip_d qrd_create_p .

• const vsip_d mview_p * a: Pointer to the input matrix to be decomposed. The matrix must have dimensions
matching those specified when the QR object was created. May be overwritten by the decomposition.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error (e.g., if the matrix dimensions don’t match the QR object).

Notes

• The input matrix A must have dimensions m×n that match those specified when the QR object was created.

• The decomposition overwrites the contents of the QR object with the new decomposition.

• The QR object can be reused for multiple decompositions by calling this function multiple times with different
input matrices (as long as they have the same dimensions).

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

255

6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.5.5 vsip_d qrsol_p - Solve Linear Systems Using QR Decomposition
typedef enum _vsip_qrd_prob {

VSIP_COV = 0, /* Solve a covariance linear system problem */

VSIP_LLS = 1 /* Solve a linear least squares problem */

} vsip_qrd_prob;

int vsip_qrsol_f(const vsip_qr_f *qrd, vsip_qrd_prob prob, const vsip_mview_f *xb);

int vsip_cqrsol_f(const vsip_cqr_f *qrd, vsip_qrd_prob prob, const vsip_cmview_f *xb);

Description

This function solves linear systems of equations using a previously computed QR decomposition for a matrix A with
m×n with rank n. It can solve a covariance linear system problem

AT AX = B

for real or
AH AX = B

for complex. Or a linear least squares problem,
min∥AX −B∥2

Parameters

• const vsip_d qr_p * qrd: Pointer to the QR decomposition object containing a previously computed decomposi-
tion.

• vsip_qrd_prob prob: Type of problem to solve.

• const vsip_d mview_p * xb: On input, contains the right-hand side matrix B of size n×k for a covariance problem
and m×k for a least squares problem. On output, contains the solution X .

Return Value

• Returns 0 on success.

• Returns a non-zero value on error

Notes

• The QR decomposition must have been previously computed using vsip_d qrd_p .

• The QR object must have been created with an option that saves the Q matrix to use this function.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

256

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER

6.5.6 vsip_d qrdsolr_p - Solve Linear Systems with Modified R Matrix
typedef enum _vsip_mat_side {

VSIP_MAT_LSIDE = 0,

VSIP_MAT_RSIDE = 1

} vsip_mat_side;

int vsip_qrdsolr_f(const vsip_qr_f *qrd, vsip_mat_op OpR, vsip_scalar_f alpha, const vsip_mview_f *xb);

int vsip_cqrdsolr_f(const vsip_cqr_f *qrd, vsip_mat_op OpR, vsip_cscalar_f alpha, const vsip_cmview_f *xb);

Description

This function solves linear systems using a QR decomposition where the R matrix has been modified by a specified
operation. It provides more flexibility than vsip_d qrsol_p by allowing operations on the R matrix before solving the
system.

The function solves systems of the form:
op(R)X =αB

where op(R) can be R, RT , or RH (conjugate transpose, though for real matrices this is equivalent to RT).

Parameters

• const vsip_d qr_p * qrd: Pointer to the QR decomposition object containing a previously computed decomposi-
tion.

• vsip_mat_op OpR: Operation to perform on R:

– VSIP_MAT_NTRANS: Use R as is

– VSIP_MAT_TRANS: Use the transpose of R, RT

– VSIP_MAT_HERM: Use the conjugate transpose of R, RH

• vsip_d scalar_p alpha: Scalar multiplier for the right-hand side.

• const vsip_d mview_p * xb: On input, contains the right-hand side B. On output, contains the solution X .

Return Value

• Returns 0 on success.

• Returns a non-zero value on error.

Notes

• The QR decomposition must have been previously computed using vsip_d qrd_p .

• The input matrix B must have appropriate dimensions for the operation:

– For VSIP_MAT_NTRANS: B should be n×k where A is m×n

– For VSIP_MAT_TRANS or VSIP_MAT_HERM: B should be m×k where A is m×n

• The input matrix XB is overwritten with the solution.

• The scalar α allows scaling of the right-hand side without modifying the input matrix.

• This function is more flexible than vsip_d qrsol_p but requires more understanding of the underlying linear
algebra.

• The QR object must have been created with an option that saves the Q matrix to use this function.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

257

6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.5.7 vsip_d qrdprodq_p - Multiply by Q Matrix from QR Decomposition
typedef enum _vsip_mat_op {

VSIP_MAT_NTRANS = 0, // op(A) = A

VSIP_MAT_TRANS = 1, // op(A) = A^T

VSIP_MAT_HERM = 2, // op(A) = A^H (complex only)

VSIP_MAT_CONJ = 3 // op(X) = A^* (complex only)

} vsip_mat_op;

typedef enum _vsip_mat_side {

VSIP_MAT_LSIDE = 0,

VSIP_MAT_RSIDE = 1

} vsip_mat_side;

int vsip_qrdprodq_f(const vsip_qr_f *qrd, vsip_mat_op opQ, vsip_mat_side apQ, const vsip_mview_f *c);

int vsip_cqrdprodq_f(const vsip_cqr_f *qrd, vsip_mat_op opQ, vsip_mat_side apQ, const vsip_cmview_f *c);

Description

This function performs matrix multiplication with the orthogonal matrix Q from a QR decomposition. It computes either
QC, QTC, QHC, CQ,CQT or CQH , depending on the specified parameters.

The operation performed is determined by the opQ and apQ parameters:

• opQ specifies whether to use Q, QT or QH

• apQ specifies whether Q is on the left or right of the multiplication

Parameters

• const vsip_d qr_p * qrd: Pointer to the QR decomposition object containing a previously computed decomposi-
tion.

• vsip_mat_op opQ: Operation to perform with Q:

– VSIP_MAT_NTRANS: Use Q as is

– VSIP_MAT_TRANS: Use the transpose of Q, QT

– VSIP_MAT_HERM: Use the conjugate transpose of Q, QH

• vsip_mat_side apQ: Side of multiplication:

– VSIP_MAT_LEFT: Q is on the left (QC, QTC or QHC)

– VSIP_MAT_RIGHT: Q is on the right (CQ, CQT or CQH)

• const vsip_d mview_p * c: On input, contains matrix C. On output, contains the result of the multiplication.

Return Value

• Returns 0 on success.

• Returns a non-zero value on error.

Notes

• The QR decomposition must have been previously computed using vsip_d qrd_p .

• The QR object must have been created with an option that saves the Q matrix (VSIP_QRD_SAVEQ or VSIP_QRD_SAVEQ1).

• The input matrix C must have appropriate dimensions for the operation.

For VSIP_QRD_SAVEQ1:

Input Output
MAT_LSIDE MAT_RSIDE MAT_LSIDE MAT_RSIDE

MAT_NTRANS n× s r×m m× s r×n
MAT_TRANS m× s r×n n× s r×m
MAT_HERM m× s r×n n× s r×m

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

258

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER

For VSIP_QRD_SAVEQ:

Input and Output
MAT_LSIDE MAT_RSIDE

MAT_NTRANS m× s r×m
MAT_TRANS m× s r×m
MAT_HERM m× s r×m

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

259

	About this Guide
	Legal Information
	Feedback and Contact

	Overview
	Introduction
	Link Libraries

	General Functions
	vsip_cstorage_p - Complex storage type

	Support Functions
	Initialization Functions
	vsip_init - Initialize
	vsip_finalize - Finalize

	Block Support Functions
	vsip_dblockcreate_p - Create a block
	vsip_blockbind_p - Create a block using existing data
	vsip_cblockbind_p - Create a block using existing data (complex)
	vsip_blockrebind_p - Rebind existing block
	vsip_cblockrebind_p - Rebind existing block (complex)
	vsip_dblockadmit_p - Admit block data
	vsip_blockfind_p - Get user data
	vsip_cblockfind_p - Get user data (complex)
	vsip_blockrelease_p - Release a block
	vsip_cblockrelease_p - Release a block (complex)
	vsip_dblockdestroy_p - Destroy a block

	Vector View Support Functions
	vsip_dvcreate_p - Create a Vector View
	vsip_dvbind_p - Bind a Vector View to a Data Block
	vsip_dvcloneview_p - Clone a Vector View
	vsip_dvget_p - Get an Element from a Vector View
	vsip_dvput_p - Set an Element in a Vector View
	vsip_dvsubview_p - Create a Subview of a Vector View
	vsip_vrealview_p - Get the Real Part View of a Complex Vector View
	vsip_vimagview_p - Get the Imaginary Part View of a Complex Vector View
	vsip_dvgetattrib_p - Get the Attributes of a Vector View
	vsip_dvputattrib_p - Set the Attributes of a Vector View
	vsip_dvgetblock_p - Get the Data Block of a Vector View
	vsip_dvgetlength_p - Get the Length of a Vector View
	vsip_dvputlength_p - Set the Length of a Vector View
	vsip_dvgetstride_p - Get the Stride of a Vector View
	vsip_dvputstride_p - Set the Stride of a Vector View
	vsip_dvgetoffset_p - Get the Offset of a Vector View
	vsip_dvputoffset_p - Set the Offset of a Vector View
	vsip_dvdestroy_p - Destroy a Vector View
	vsip_dvalldestroy_p - Destroy a Vector View and Its Data Block

	Matrix View Support Functions
	vsip_dmcreate_p - Create a Matrix View
	vsip_dmbind_p - Bind a Matrix View to a Block
	vsip_dmcloneview_p - Clone a Matrix View
	vsip_dmget_p - Get Matrix Element
	vsip_dmput_p - Set Matrix Element
	vsip_dmsubview_p - Create a Submatrix View
	vsip_dmtransview_p - Create a Transposed Matrix View
	vsip_dmrowview_p - Create a Row Vector View of a Matrix
	vsip_dmcolview_p - Create a Column Vector View of a Matrix
	vsip_dmdiagview_p - Create a Diagonal Vector View of a Matrix
	vsip_mrealview_p - Create a Real Part Matrix View
	vsip_mimagview_p - Create an Imaginary Part Matrix View
	vsip_dmgetattrib_p - Get Matrix Attributes
	vsip_dmputattrib_p - Set Matrix Attributes
	vsip_dmgetblock_p - Get the Data Block from a Matrix View
	vsip_dmgetcollength_p - Get Number of Columns in a Matrix View
	vsip_dmputcollength_p - Set Number of Columns in a Matrix View
	vsip_dmgetrowlength_p - Get Number of Rows in a Matrix View
	vsip_dmputrowlength_p - Set Number of Rows in a Matrix View
	vsip_dmgetcolstride_p - Get Column Stride of a Matrix View
	vsip_dmputcolstride_p - Set Column Stride of a Matrix View
	vsip_dmgetrowstride_p - Get Row Stride of a Matrix View
	vsip_dmputrowstride_p - Set Row Stride of a Matrix View
	vsip_dmgetoffset_p - Get Matrix View Offset
	vsip_dmputoffset_p - Set Matrix View Offset
	vsip_dmdestroy_p - Destroy a Matrix View
	vsip_dmalldestroy_p - Destroy Matrix View and its Data Block

	Scalar Functions
	Real Scalar Functions
	Complex Scalar Functions
	vsip_real_p - Complex Real part
	vsip_imag_p - Complex Imaginary part
	vsip_cmplx_p - Create complex number
	vsip_CMPLX_p - Create a Complex Scalar and Store in a Pointer

	Index Scalar Functions

	Random Number Generation
	Random Number Functions
	vsip_randcreate - Create a Random Number Generator State
	vsip_randdestroy - Destroy a Random Number Generator State
	vsip_dvrandu_p - Generate Uniformly Distributed Random Numbers in a Vector View
	vsip_dvrandn_p - Fill Vector with Normally Distributed Random Numbers

	Vector and Elementwise Operations
	Copy Functions
	vsip_dvcopy_p_p - Copy Vector Views
	vsip_dmcopy_p - Copy Matrix Views

	Vector General
	vsip_dvmul_p - Element-wise Multiplication of Two Vector Views
	vsip_vdiv_p - Element-wise Division of Two Vector Views
	vsip_dvadd_p - Element-wise Addition of Two Vector Views
	vsip_dvsub_p - Element-wise Subtraction of Two Vector Views
	vsip_dsvmul_p - Multiply a Scalar by a Vector View
	vsip_svdiv_p - Divide a Scalar by a Vector View
	vsip_svadd_p - Add a Scalar to a Vector View
	vsip_dvneg_p - Negate Elements of a Vector View
	vsip_dvmag_p - Compute Magnitude of Elements of a Vector View

	Vector Real
	vsip_vminval_p - Find the Minimum Value in a Vector View
	vsip_vmaxval_p - Find the Maximum Value in a Vector View
	vsip_vsumval_p - Compute the Sum of Elements in a Vector View
	vsip_vsumsqval_p - Compute the Sum of Squares of Elements in a Vector View
	vsip_vsq_p - Square Elements of a Vector View
	vsip_vrecip_p - Compute Reciprocal of Elements of a Vector View
	vsip_vmin_p - Element-wise Minimum of Two Vector Views
	vsip_vmax_p - Element-wise Maximum of Two Vector Views
	vsip_vsin_p - Element-wise Sine of a Vector View
	vsip_vcos_p - Element-wise Cosine of a Vector View
	vsip_vtan_p - Element-wise Tangent of a Vector View
	vsip_vatan_p - Element-wise Arctangent of a Vector View
	vsip_vexp_p - Element-wise Exponential of a Vector View
	vsip_vlog_p - Element-wise Natural Logarithm of a Vector View
	vsip_vlog10_p - Element-wise Base-10 Logarithm of a Vector View
	vsip_vsqrt_p - Element-wise Square Root of a Vector View
	vsip_vatan2_p - Element-wise Arctangent of Two Vector Views
	vsip_vfill_p - Fill a Vector View with a Scalar Value
	vsip_vramp_p - Fill a Vector View with a Ramp

	Vector Complex
	vsip_cvjmul_p - Element-wise Complex Conjugate Multiplication of Two Complex Vector Views
	vsip_rcvmul_p - Element-wise Real-Complex Multiplication
	vsip_rscvmul_p - Element-wise Scalar-Complex Multiplication
	vsip_cvconj_p - Element-wise Complex Conjugate of a Complex Vector View
	vsip_cvmag_p - Compute Magnitude of Complex Vector View
	vsip_vcmagsq_p - Element-wise Magnitude Squared of a Complex Vector View

	Boolean
	vsip_vnot_p - Boolean Vector Logical NOT
	vsip_vand_p - Boolean Vector Logical AND
	vsip_vor_p - Boolean Vector Logical OR
	vsip_vxor_p - Boolean Vector Logical XOR
	vsip_valltrue_p - Check if All Elements in Boolean Vector are True
	vsip_vanytrue_p - Check if Any Element in Boolean Vector is True
	vsip_vindexbool - Find Indices of True Elements in Boolean Vector

	Manipulation Operations
	vsip_vreal_p - Extract Real Part of a Complex Vector View
	vsip_vimag_p - Extract Imaginary Part of a Complex Vector View
	vsip_vcmplx_p - Create a Complex Vector View from Real and Imaginary Parts
	vsip_dvgather_p - Gather Elements from a Vector
	vsip_dvscatter_p - Scatter Elements to a Vector
	vsip_dvswap_p - Swap Elements Between two Vectors
	vsip_vrect_p - Convert Cartesian Coordinates to Complex Numbers
	vsip_vpolar_p - Convert Polar Coordinates to Cartesian

	Signal Processing Functions
	FFT Functions
	vsip_ddfftop_create_p - Create FFT Objects (Out-of-Place)
	vsip_ccfftip_create_p - Create FFT Object (In-Place)
	vsip_fft_destroy_p - Destroy an FFT Object
	vsip_fft_getattr_p - Get FFT Object Attributes
	vsip_ddfftop_p - Perform FFT Operations (Out-of-Place)
	vsip_ccfftip_p - Perform FFT Operations (In-Place)
	vsip_ddffmop_create_p - Create Multiple-FFT Objects (Out-of-Place)
	vsip_ccffmip_create_p - Create Multilpe-FFT Object (In-Place)
	vsip_fftm_destroy_p - Destroy a Multiple-FFT Object
	vsip_fftm_getattr_p - Get Multple-FFT Object Attributes
	vsip_ddffmop_p - Perform Multiple-FFT Operations (Out-of-Place)
	vsip_ccffmip_p - Perform Multiple-FFT Operations (In-Place)

	Convolution and Correlation Functions
	vsip_dconv1d_create_p - Create 1D Convolution Object
	vsip_dconv1d_destroy_p - Destroy 1D Convolution Object
	vsip_dconv1d_getattr_p - Get 1D Convolution Object Attributes
	vsip_dconvolve1d_p - Perform 1D Convolution
	vsip_dcorr1d_create_p - Create 1D Correlation Object
	vsip_dcorr1d_destroy_p - Destroy 1D Correlation Object
	vsip_dcorr1d_getattr_p - Get 1D Correlation Object Attributes
	vsip_dcorrelate1d_p - Compute 1D Correlation

	Window Functions
	vsip_vcreate_blackman_p - Create a Blackman Window Vector
	vsip_vcreate_kaiser_p - Create a Kaiser Window Vector
	vsip_vcreate_cheby_p - Create a Chebyshev Window Vector
	vsip_vcreate_hanning_p - Create a Hanning Window Vector

	FIR
	vsip_dfir_create_p - Create a FIR Filter
	vsip_dfir_reset_p - Reset a FIR Filter
	vsip_dfir_getattr_p - Get Attributes of a FIR Filter
	vsip_dfirflt_p - Apply a FIR Filter to a Vector View
	vsip_dfir_destroy_p - Destroy a FIR Filter

	Miscellaneous Signal Processing Functions
	vsip_vhisto_p - Compute Histogram of a Vector View

	Linear Algebra Functions
	Matrix and Vector Operations
	vsip_dvdot_p - Compute the Dot Product of Two Vector Views
	vsip_cvjdot_p - Compute the Conjugate Dot Product of Two Complex Vector Views
	vsip_dvouter_p - Outer Product of Two Vectors
	vsip_dmtrans_p - Matrix Transposition
	vsip_cmherm_p - Matrix Hermitian
	vsip_dgemp_p - General Matrix Product
	vsip_dgems_p - General Matrix Scaling and Addition
	vsip_dvmprod_p - Vector-Matrix Product
	vsip_dmvprod_p - Matrix-Vector Product
	vsip_dmprod_p - Matrix-Matrix Product
	vsip_dmprodt_p - Matrix-Matrix Product with Transposition
	vsip_cmprodh_p - Complex Matrix Product with Hermitian Transpose
	vsip_cmprodj_p - Complex Matrix Product with Conjugate

	Special Linear Solvers
	vsip_dtoepsol_p - Solve a Toeplitz System of Equations
	vsip_dcovsol_p - Solve a Covariance System of Equations
	vsip_dllsqsol_p - Solve Linear Least Squares Problem

	General Linear Square System Solver
	vsip_dlud_create_p - Create LU Decomposition Object
	vsip_dlud_destroy_p - Destroy LU Decomposition Object
	vsip_dlud_getattr_p - Get LU Decomposition Attributes
	vsip_dlud_p - Perform LU Decomposition
	vsip_dlusol_p - Solve Linear System Using LU Decomposition

	Symmetric Positive Definite Linear System Solver
	vsip_dchold_create_p - Create Cholesky Decomposition Object
	vsip_dchold_destroy_p - Destroy Cholesky Decomposition Object
	vsip_dchold_getattr_p - Get Cholesky Decomposition Attributes
	vsip_dchold_p - Perform Cholesky Decomposition
	vsip_dcholsol_p - Solve Linear Systems Using Cholesky Decomposition

	Over-determined Linear System Solver
	vsip_dqrd_create_p - Create QR Decomposition Object
	vsip_dqrd_destroy_p - Destroy QR Decomposition Object
	vsip_dqrd_getattr_p - Get QR Decomposition Attributes
	vsip_dqrd_p - Perform QR Decomposition
	vsip_dqrsol_p - Solve Linear Systems Using QR Decomposition
	vsip_dqrdsolr_p - Solve Linear Systems with Modified R Matrix
	vsip_dqrdprodq_p - Multiply by Q Matrix from QR Decomposition

