Adelsbach/VSIPL
Core Profile

Programming Reference Guide
DD-00016-015

Jan Adelsbach

February 7, 2026

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

Contents

... 8

10.1.1 Legal Information| e 8
[0.12 Feedbackand Contact]. 8
D2 0Verviewl. o oo 8
0.2.1 Introduction| e 8
0.2.2 TLink Dibraries| e 8

0.3 General Functions| 9
10.3.1 vsip_cstorage_p - Complex storagetype| e 10

11 Support Functions| 11
L1 Imitialization Functions| o L e 12
[1.1.1 vsip_init-Initialize|. 13
I1.1.2 vsip_finalize-Finalize| 14

1.2 Block Support Functions| e e 15
11.2.1 vsip_dblockcreate_p -Createablock| i . 16
|[1.2.2 vsip_blockbind_p - Create a block using existingdatal. 18
|1.2.3 vsip_cblockbind_p - Create a block using existing data (complex)[. 20
|1.2.4 vsip_blockrebind_p - Rebind existingblock| oo o oo 22
|11.2.5 vsip_cblockrebind_p - Rebind existing block (complex)| 24
11.2.6 vsip_dblockadmit_p - Admit blockdatal o . 25
11.2.7 vsip_blockfind_p -Getuserdatal 26
|1.2.8 vsip_cblockfind_p - Get user data (complex)| L. 27
I1.2.9 vsip_blockrelease_p - Releaseablockl o 28
|1.2.10 vsip_cblockrelease_p - Release a block (complex)| 29
|11.2.11 vsip_dblockdestroy_p - Destroyablockl oo oo 30

I1.3 Vector View Support Functions| e 31
[1.3.1 vsip_dvcreate_p - Createa Vector View| 32
|I1.3.2 vsip_dvbind_p - Bind a Vector Viewtoa DataBlock| 33
|I1.3.3 vsip_dvcloneview_p - Clonea Vector View|. L 34
|11.3.4 vsip_dvget_p - Get an Element from a Vector View|. o oL 35
11.3.5 vsip_dvput_p - Set an Element ina Vector View|. oo oL, 36
11.3.6 vsip_dvsubview_p - Create a Subview of a Vector View| 37
|1.3.7 vsip_vrealview_p - Get the Real Part View of a Complex Vector View| 38
|1.3.8 vsip_vimagview_p - Get the Imaginary Part View of a Complex Vector View| 39
11.3.9 vsip_dvgetattrib_p - Get the Attributes ofa Vector View| 40
11.3.10 vsip_dvputattrib_p - Set the Attributes of a Vector View|. 41
11.3.11 vsip_dvgetblock_p - Get the Data Block of a Vector View|. 42
|1.3.12 vsip_dvgetlength_p - Get the Length of a Vector View| 43
|1.3.13 vsip_dvputlength_p - Set the Length of a Vector View|. 44
|1.3.14 vsip_dvgetstride_p - Get the Stride of a Vector View| 45
11.3.15 vsip_dvputstride_p - Set the Stride of a Vector View| 46
11.3.16 vsip_dvgetoffset_p - Get the Offset of a Vector View| 47
11.3.17 vsip_dvputoffset_p - Set the Offset of a Vector View| 48
|1.3.18 vsip_dvdestroy_p - Destroy a Vector View| 49
|1.3.19 vsip_dvalldestroy_p - Destroy a Vector View and Its Data Block|. 50

I1.4 Matrix View Support Functions| L 51
11.4.1 vsip_dmcreate_p -Createa MatrixView| L 52

CONTENTS CONTENTS

1.4.2 vsip_dmbind_p - Bind a Matrix ViewtoaBlock| o 0. 54

1.4.3 vsip_dmcloneview_p - Clonea Matrix View| 55
|L.4.4 vsip_dmget_p - Get Matrix Element] 56
11.4.5 vsip_dmput_p - Set Matrix Element| L 57
[1.4.6 vsip_dmsubview_p - Create a Submatrix View| 58
vsip_dmtransview_p - Create a Transposed MatriXx VIEW| v v v v v v oo i ie e 59

1.4.9 vsip_dmcolview_p - Create a Column Vector ViewofaMatrix| 61
|1.4.10 vsip_dmdiagview_p - Create a Diagonal Vector Viewofa Matrix|. 62
|1.4.11 vsip_mrealview_p - Create a Real Part Matrix View| 64
[1.4.12 vsip_mimagview_p - Create an Imaginary Part Matrix View|. 65

. vsip_dmgetattrib_p - Get Matrix Attributes| L Lo L. 66

1.4.14 vsip_dmputattrib_p - Set Matrix Attributes|. L o 68
1.4.15 vsip_dmgetblock_p - Get the Data Block from a Matrix View|. 70
|1.4.16 vsip_dmgetcollength_p - Get Number of Columns in a Matrix View| 71
11.4.17 vsip_dmputcollength_p - Set Number of Columns in a Matrix View| 72
1.4.18 vsip_dmgetrowlength_p - Get Number of Rowsina Matrix View| 73

o 5 74

75

1.4.21 vsip_dmputcolstride_p - Set Column Stride of a Matrix View|. 76
|1.4.22 vsip_dmgetrowstride_p - Get Row Stride of a Matrix View|. 77
11.4.23 vsip_dmputrowstride_p - Set Row Stride of a Matrix View| 78
[1.4.24 vsip_dmgetoffset_p - Get Matrix View Offset]. 79
4.25 vsip_dmputoffset_p - Set Matrix View Offset] L. o .. 80
1.4.26 vsip_dmdestroy_p - Destroy a Matrix View|. 81
[T.-427 vsip_dmalldestroy_p - Destroy Matrix View and its Data BIock]. 82
[2_Scalar Functions| 83
21 RealScalar Functions] e 84
2.2 Complex Scalar Functions| e 85

[2.2.1 vsip_real_p -ComplexRealpart| 86

2.2 vsip_imag_p - Complex Imagmarypart] 87

2.2.3 vsip_cmplx_p - Create complexnumber| o Lo o 88
[2:274 vsip_CMPLX_p - Create a Complex Scalar and Storeina Pointer]. 89

2.3 Index Scalar Functions 90

3.1.4 vsip_dvrandn_p - Fill Vector with Normally Distributed Random Numbers| 96

4 Vector and Elementwise Operations| 97
4.1 Copy Functions| e e 98
4.1.1 vsip_dvcopy_p_p - Copy Vector Views|. e e 99

[£12 vsip_dmcopy_p - Copy Matrix Views| 100

M2 Vector Generall vt vvv ettt e e e e 101
4.2.1 vsip_dvmul_p - Element-wise Multiplication of Two Vector Views| 102

4.2.2 vsip_vdiv_p - Element-wise Division of Two Vector Views| 103

4.2.3 vsip_dvadd_p - Element-wise Addition of Two Vector Views|. 104

4.2.4 vsip_dvsub_p - KElement-wise Subtraction of T'wo Vector Views|. 105
vsip_dsvmul_p - Multiply a Scalar by a Vector View| o000, 106

vsip_svdiv_p - Divide a Scalar by a Vector View|. o L. 107

4.2.7 vsip_svadd_p - aScalartoa Vector View| L. 108

4.2.8 vsip_dvneg_p - Negate Elements of @ VECtor VIEW|. v o v v v vttt e e e et e e 109

4.2.9 vsip_dvmag_p - Compute Magnitude of Elements of a Vector View| 110

K43 Vector Reall e 111
4.3.1 vsip_vminval_p - Find the Minimum Value in a Vector View| 112

Version 1.5, January 2026 - Release Version 4

Copyright © Adelsbach

CONTENTS CONTENTS

4.3.2 vsip_vmaxval_p - Find the Maximum Valueina Vector View| 113
4.3.3 vsip_vsumval_p - Compute the Sum of Elements in a Vector View| 114
434 vsip_vsumsqval_p - Compute the Sum of Squares of Elements in a Vector View]. 115
4.3.5 vsip_vsq_p - Square Elements of a Vector View| oo oL, 116
4.3.6 vsip_vrecip_p - Compute Reciprocal of Elements of a Vector View|. 117
4.3.7 vsip_vmin_p - Element-wise Minimum of Two Vector Views| 118
4.3.8 vsip_vmax_p - Element-wise Maximum of Two Vector Views|. 119
4.3.9 vsip_vsin_p - Element-wise Sine of a Vector View|. o oL 120
[4.3.10 vsip_vcos_p - Element-wise Cosine of a Vector View| 121
4.3.11 vsip_vtan_p - Element-wise Tangent of a Vector View| 122
4.3.12 vsip_vatan_p - Element-wise Arctangent of a Vector View|. 123
|4.3.13 vsip_vexp_p - Element-wise Exponential of a Vector View| 124
4.3.14 vsip_vlog_p - Element-wise Natural Logarithm of a Vector View|. 125
4.3.15 vsip_vloglO_p - Element-wise Base-10 Logarithm of a Vector View| 126
[4.3.16 vsip_vsqrt_p - Element-wise Square Root of a Vector View| 127
4.3.17 vsip_vatan2_p - Element-wise Arctangent of Two Vector Views|. 128
[4.3.18 vsip_vfill_p - Fill a Vector View with a Scalar Value| 129
[4.3.19 vsip_vramp_p - Fill a Vector View witha Ramp|. L L. 130

4.4 Vector Complex| e e e e e 131
4.4.1 vsip_cvjmul_p - Element-wise Complex Conjugate Multiplication of Two Complex Vector Views|. . 132
4.4.2 vsip_rcvmul_p - Element-wise Real-Complex Multiplication| 133
4.4.3 vsip_rscvmul_p - Element-wise Scalar-Complex Multiplication|. 134
4.4.4 vsip_cvconj_p - Element-wise Complex Conjugate of a Complex Vector View| 135
4.4.5 vsip_cvmag_p - Compute Magnitude of Complex Vector View|, 136
4.4.6 vsip_vcmagsq_p - Element-wise Magnitude Squared of a Complex Vector View| 137

B5 Booleanl.o 138
4.5.1 vsip_vnot_p - Boolean Vector Logical NOT| 139
4.5.2 vsip_vand_p - Boolean Vector Logical AND| 0. 140
45.3 vsip_vor_p - Boolean Vector Logical OR) it 141
4.56.4 vsip_vxor_p - Boolean Vector Logical XOR| L. 142
4.5.5 vsip_valltrue_p - Check if All Elements in Boolean Vector are True| 143
4.5.6 vsip_vanytrue_p - Check if Any Element in Boolean Vectoris True| 144
|4.5.7 vsip_vindexbool - Find Indices of True Elements in Boolean Vector| 145

4.6 Manipulation Operations| e e e 146
4.6.1 vsip_vreal_p - Extract Real Part of a Complex Vector View| 147
4.6.2 vsip_vimag_p - Extract Imaginary Part of a Complex Vector View| 148
4.6.3 vsip_vcmplx_p - Create a Complex Vector View from Real and Imaginary Parts|. 149
4.6.4 vsip_dvgather_p - Gather Elements fromaVector], 150
4.6.5 vsip_dvscatter_p - Scatter Elementstoa Vector| oo oo, 152
4.6.6 vsip_dvswap_p - Swap Elements Between two Vectors|o oo oL 154
[4.6.7 vsip_vrect_p - Convert Cartesian Coordinates to Complex Numbers| 156
4.6.8 vsip_vpolar_p - Convert Polar Coordinates to Cartesian|. 158
[6_Signal Processing Functions| 161
.. 162

[5.11 vsip_ddfftop_create_p - Create FFT Objects (Out-of-Place)., 163
5.1.2 vsip_ccfftip_create_p - Create FFT Object (In-Place)| 165
5.1.3 vsip_fft_destroy_p - Destroy an Ject] 167
.14 vsip_fft_getattr_p - Get FFT Object Attributes| 168
9.1.5 vsip_ddfftop_p - Perform FFT Operations (Out-of-Place), 169
[5.1.6 vsip_ccfftip_p - Perform FFT Operations (In-Place)|. oo 170
[5.1.7 vsip_ddffmop_create_p - Create Multiple-FFT Objects (Out-of-Place)] 171
9.1.8 vsip_ccffmip_create_p - Create Multilpe-FFT Object (In-Place), 173
[5.1.9 vsip_fftm_destroy_p - Destroy a Multiple-FFT Object] 174
[5.1.70 vsip_fftm_getattr_p - Get Multple-FFT Object Attributes| 175
9.1.11 vsip_dd ffmop_p - Perform Multiple-FF'T Operations (Out-of-Place)l 176
[6.7.12 vsip_ccffmip_p - Perform Multiple-FFT Operations (In-Place)| 177
[E.2_Convolution and Correlation Functions] 178
Version 1.5, January 2026 - Release Version 5

Copyright © Adelsbach

CONTENTS CONTENTS

[-21 vsip_dconvid_create_p - Create 1D Convolution Object] 179
5.2.2 vsip_dconvld_destroy_p - Destroy 1D Convolution Object{ 181

5.2.3 vsip_dconvld_getattr_p - Get 1D Convolution Object Attributes|. 182
[6.24 vsip_dconvolveld_p - Perform 1D Convolution|, 183
5.2.5 vsip_dcorrld_create_p - Create 1D Correlation Object]. 184

5.2.6 vsip_dcorrld_destroy_p - Destroy 1D Correlation Object{ 186
[6.277 vsip_dcorrid_getattr_p - Get 1D Correlation Object Attributes| 187
9.2.8 vsip_dcorrelateld_p - Compute 1D Correlation| 188

5.3 Window Funclions]« oo 190
[5.3.1T vsip_vcreate_blackman_p - Create a Blackman Window Vector] 191
9.3.2 vsip_vcreate_kaiser_p - Create a Kaiser Window Vector|. 193
[5.3.3 vsip_vcreate_cheby_p - Create a Chebyshev Window Vector] 195
[5.3.4 vsip_vcreate_hanning_p - Create a Hanning Window Vector]. 197

5.4 FIRl . . . 199
541 vsip_dfir_create_p -Create a FIR FIIter] o o v v v v i i e e 200
.42 vsip_dfir_reset_p - Reset a FIRFIIter]. o o i it e e e e e e e e e 202
15.4.3 vsip_dfir_getattr_p - Get Attributesofa FIR Filter], 203
44 vsip_dfirfit_p - Apply a FIR Filter toa Vector VIEW] oo it 204
[5.45 vsip_dfir_destroy_p - Destroy a FIR FIlter]. v v v vttt e 205

6.5 Miscellaneous Signal Processing Functions| 206
[5.5.:1 vsip_vhisto_p - Compute Histogram of @ Vector VIEW] v vttt 207
[6_Linear Algebra Functions| 209
6.1 Matrix and Vector Operations| e e e e e 210
6.1.1 vsip_dvdot_p - Compute the Dot Product of Two Vector Views| 211
6.1.2 vsip_cvjdot_p - Compute the Conjugate Dot Product of Two Complex Vector Views| 212
6.1.3 vsip_dvouter_p - Outer Product of Two Vectors| 213
6.1.4 vsip_dmtrans_p - Matrix Transposition| 215
6.1.5 vsip_cmherm_p - Matrix Hermitian| 0 217
6.1.6 vsip_dgemp_p - General Matrix Product{. L 218
6.1.7 vsip_dgems_p - General Matrix Scaling and Addition|. Lo L. 220
6.1.8 vsip_dvmprod_p - Vector-Matrix Product] o . 222
6.1.9 vsip_dmvprod_p - Matrix-Vector Product] 224
16.1.10 vsip_dmprod_p - Matrix-Matrix Product{. o 226
6.1.11 vsip_dmprodt_p - Matrix-Matrix Product with Transposition| 228
16.1.12 vsip_cmprodh_p - Complex Matrix Product with Hermitian Transpose| 230
16.1.13 vsip_cmprodj_p - Complex Matrix Product with Conjugate| 232

6.2 Special Linear Solvers|. e e e 234
6.2.1 vsip_dtoepsol_p - Solve a Toeplitz System of Eiquations| 235
6.2.2 vsip_dcovsol_p - Solve a Covariance System of Equations|, 236
6.2.3 vsip_dllsgsol_p - Solve Linear Least Squares Problem|. 237

6.3 General Linear Square System Solver| e 238
6.3.1 vsip_dlud_create_p - Create LU Decomposition Object], 239
6.3.2 vsip_dlud_destroy_p - Destroy LU Decomposition Object| 240
6.3.3 vsip_dlud_getattr_p - Get ecomposition Attributes|. o L Lo 241
6.3.4 vsip_dlud_p - Perform LU Decomposition|. 242
[6.3.5 vsip_dlusol_p - Solve Linear System Using LU Decomposition| 243

6.4 Symmetric Positive Definite Linear System Solver|. 244
6.4.1 vsip_dchold_create_p - Create Cholesky Decomposition Object{. 245
6.4.2 vsip_dchold_destroy_p - Destroy Cholesky Decomposition Object| 246
16.4.3 vsip_dchold_getattr_p - Get Cholesky Decomposition Attributes| 247
6.4.4 vsip_dchold_p - Perform Cholesky Decomposition| 248
6.4.5 vsip_dcholsol_p - Solve Linear Systems Using Cholesky Decomposition| 249

6.5 Over-determined Linear System Solver| 250
6.5.1 vsip_dqrd_create_p - Create QR Decomposition Object| 251
16.5.2 vsip_dqrd_destroy_p - Destroy QR Decomposition Object] 253
16.5.3 vsip_dqrd_getattr_p - Get QR Decomposition Attributes|. 254
6.5.4 vsip_dqrd_p - Perform QR Decomposition| 255
Version 1.5, January 2026 - Release Version 6

Copyright © Adelsbach

CONTENTS CONTENTS

6.6.5 vsip_dqgrsol_p - Solve Linear Systems Using QR Decomposition|. 256
6.5.6 vsip_dqgrdsolr_p - Solve Linear Systems with Modified RMatrix| 257
6.5.7 vsip_dqrdprodq_p - Multiply by Q Matrix from QR Decomposition| 258
Version 1.5, January 2026 - Release Version 7

Copyright © Adelsbach

0.1. ABOUT THIS GUIDE CONTENTS

0.1 About this Guide

0.1.1 Legal Information

Copyright ©2025-2026 Adelsbach UG (haftungsbeschrinkt). All Rights Reserved.
Copyright ©2025-2026 Jan Adelsbach. All Rights Reserved.
From herein referred to as Adelsbach.

This document may not be reproduced without written permission by Adelsbach.

0.1.2 Feedback and Contact

For feedback on this document, please use the following email address:
techpubs@adelsbach-research.eu

Please include the page number or a link to the page.

For general contact details, please visit https:/adelsbach-research.eu/contact.

0.2 Overview

0.2.1 Introduction
The Adelsbach /VSIPL is an implmenetation of the digital signal processing API standard of the Object Management

Group version VSIPL 1.5.

This reference manual provides a brief reference of all functionality provided in the Adelsbach / VSIPL library for the
Core profile. For a more throughfully and complete reference, please refer to the Object Management Group VSIPL 1.5
standard.

0.2.2 Link Libraries

The following libraries are provided with the distribution. For development it is recommended to link against the more
extensive error checking library, whereas for deployment use one of the performance tuned variants.

e libavsipl_c.a Performance tuned library without additional error checking. May make use of processor SIMD
features, please see platform details.

* libavsipl_c_mp.a Performance tuned library with shared memory multithreading (OpenMP)

* libavsipl_c_dbg.a Non-performance tuned library with extensive error checking.

Version 1.5, January 2026 - Release Version 8
Copyright © Adelsbach

CONTENTS 0.3. GENERAL FUNCTIONS

0.3 General Functions

Version 1.5, January 2026 - Release Version 9
Copyright © Adelsbach

0.3. GENERAL FUNCTIONS CONTENTS

0.3.1 vsip_cstorage_p - Complex storage type

typedef enum _vsip_cmplx_mem {
VSIP_CMPLX_INTERLEAVED,
VSIP_CMPLX_SPLIT,
VSIP_CMPLX_NONE

} vsip_cmplx_mem;

vsip_cmplx_mem vsip_cstorage_f (void);

/* deprecated */

vsip_cmplx_mem vsip_cstorage(void);

Description

These functions query the manner in which complex values are stored. This can be in interleaved (real followed by
imaginary part in one vector) or split format (two separate vectors).

Return Value

¢ Returns one of the enumerator values.

Example

vsip_cmplx_mem complex_storage;

// Allocate complex storage using the preferred method
complex_storage = vsip_cstorage_fQ);

Version 1.5, January 2026 - Release Version 10
Copyright © Adelsbach

Chapter 1

Support Functions

11

1.1. INITIALIZATION FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.1 Initialization Functions

Version 1.5, January 2026 - Release Version 12
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.1. INITIALIZATION FUNCTIONS

1.1.1 vsip_init - Initialize

int vsip_init(voidx);

Description

This function initializes the VSIPL library and must be called before any other VSIPL functions are used. It can be
called multiple times without side effects.

Parameters

* void*: The argument is unused and should be set to 0 or NULL.

Return Value
¢ Returns O on success.

e Returns a non-zero value on error.

Example

int result;

// Initialize the VSIPL library
result = vsip_init(NULL);

if (result '= 0) {
// Handle error
}

Version 1.5, January 2026 - Release Version 13
Copyright © Adelsbach

1.1. INITIALIZATION FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.1.2 vsip_finalize - Finalize

int vsip_finalize(voidx);

Description

This function finalizes the VSIPL library, releasing all internal resources and memory. After calling this function, no
other VSIPL functions may be called. The function can be called in a nested manner, but only the outermost call will
actually free up the internal initialization memory.

Parameters

¢ void*: The argument is unused and should be set to O or NULL.

Return Value

¢ Returns 0 on success.

¢ Returns a non-zero value on error.

Example

int result;

// Finalize the VSIPL library
result = vsip_finalize(NULL);

if (result '= 0) {
// Handle error
}

Version 1.5, January 2026 - Release Version 14
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

1.2 Block Support Functions

Version 1.5, January 2026 - Release Version 15
Copyright © Adelsbach

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.1 vsip_dblockcreate_p - Create a block

typedef enum _vsip_memory_hint {
VSIP_MEM_NONE =0,
VSIP_MEM_RDONLY =
VSIP_MEM_CONST =
VSIP_MEM_SHARED =
VSIP_MEM_SHARED_RDONLY
VSIP_MEM_SHARED_CONST

} vsip_memory_hint;

s

2

>

>

O W N

vsip_block_f* vsip_blockcreate_f(vsip_length n, vsip_memory_hint h);
vsip_block_i* vsip_blockcreate_i(vsip_length n, vsip_memory_hint h);
vsip_block_bl* vsip_blockcreate_bl(vsip_length n, vsip_memory_hint h);
vsip_block_vi* vsip_blockcreate_vi(vsip_length n, vsip_memory_hint h);
vsip_block_mi* vsip_blockcreate_mi(vsip_length n, vsip_memory_hint h);
vsip_cblock_f* vsip_cblockcreate_f(vsip_length n, vsip_memory_hint h);

Description
These functions create a block of data of the specified type with n > 0 elements. The memory hint h describes how this
data is intended to be used, such as read-only, constant, or shared memory.

Parameters

¢ vsip_length n: The number of elements in the block. Must be greater than 0.

* vsip_memory_hint h: Memory hint for the block, indicating properties such as read-only, constant, or shared
memory.

VSIP_MEM_NONE - No memory hint

VSIP_MEM_RDONLY - The memory is to be used read-only

VSIP_MEM_CONST - The memory will hold constants

VSIP_MEM_SHARED - The memory will be shared

VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only
VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

* On success, a pointer to the newly created block object is returned.

¢ On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_length length = 10;
vsip_memory_hint hint = VSIP_MEM_NONE;
vsip_block_f *float_block;

// Create a float block
float_block = vsip_blockcreate_f(length, hint);

if (float_block == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 16
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

vsip_block_i *int_block;

// Create an integer block
int_block = vsip_blockcreate_i(length, hint);

if (int_block == NULL) {
// Handle error
}

vsip_cblock_f *complex_block;

// Create a complex float block
complex_block = vsip_cblockcreate_f(length, hint);

if (complex_block == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 17
Copyright © Adelsbach

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.2 vsip_blockbind_p - Create a block using existing data

typedef enum _vsip_memory_hint {
VSIP_MEM_NONE =0,
VSIP_MEM_RDONLY
VSIP_MEM_CONST =
VSIP_MEM_SHARED =
VSIP_MEM_SHARED_RDONLY
VSIP_MEM_SHARED_CONST

} vsip_memory_hint;

s

2

2

>

O W N

vsip_block_f* vsip_blockbind_f (vsip_scalar_f *p, vsip_length n, vsip_memory_hint h);
vsip_block_i* vsip_blockbind_i(vsip_scalar_i *p, vsip_length n, vsip_memory_hint h);
vsip_block_bl* vsip_blockbind_bl(vsip_scalar_bl *p, vsip_length n, vsip_memory_hint h);
vsip_block_vi* vsip_blockbind_vi(vsip_scalar_vi *p, vsip_length n, vsip_memory_hint h);
vsip_block_mi* vsip_blockbind_mi(vsip_scalar_mi *p, vsip_length n, vsip_memory_hint h);
Description
These functions create a new data block using an existing data array p with n > 0 elements and a given memory hint h.
The block must be admitted before it can be used.
Parameters

¢ vsip_scalar_p *p: Pointer to the existing data array.

¢ vsip_length n: The number of elements in the data array. Must be greater than 0.

¢ vsip_memory_hint h: Memory hint for the block, indicating properties such as read-only, constant, or shared
memory.

VSIP_MEM_NONE - No memory hint

VSIP_MEM_RDONLY - The memory is to be used read-only

VSIP_MEM_CONST - The memory will hold constants

VSIP_MEM_SHARED - The memory will be shared

VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only
VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value
* On success, a pointer to the newly created block object is returned.

¢ On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_scalar_f float_datal[10]; // Ezample float data array
vsip_length length = 10;

vsip_memory_hint hint = VSIP_MEM_NONE;

vsip_block_f *float_block;

// Create a float block
float_block = vsip_blockbind_f (float_data, length, hint);

if (float_block == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 18
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

// Admit the block before using it
int result = vsip_blockadmit_f (float_block, VSIP_TRUE);
if (result != 0) {
// Handle error
}

Version 1.5, January 2026 - Release Version 19
Copyright © Adelsbach

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.3 vsip_cblockbind_p - Create a block using existing data (complex)

typedef enum _vsip_memory_hint {
VSIP_MEM_NONE =0,
VSIP_MEM_RDONLY
VSIP_MEM_CONST =
VSIP_MEM_SHARED =
VSIP_MEM_SHARED_RDONLY
VSIP_MEM_SHARED_CONST

} vsip_memory_hint;

>

2

2

>

O W N

vsip_cblock_f* vsip_cblockbind_f(vsip_scalar_f *r, vsip_scalar_f *i, vsip_length n, vsip_memory_hint h);

Description

This function creates a new complex data block using existing data, which can be either interleaved complex numbers
or split real and imaginary data arrays. If the imaginary data array i is NULL, it is assumed that r is interleaved and
contains 2n > 0 elements. If the imaginary data array is provided, it is assumed that each of the r and i arrays contains
n >0 elements.

The block must be admitted before it can be used.

Parameters
* vsip_scalar_p *r: Pointer to the real part array or the interleaved array.
* vsip_scalar_p xi: Pointer to the imaginary part array. If NULL, r is assumed to be interleaved.
¢ vsip_length n: The number of complex elements. Must be greater than 0.

* vsip_memory_hint h: Memory hint for the block, indicating properties such as read-only, constant, or shared
memory.
— VSIP_MEM_NONE - No memory hint
VSIP_MEM_RDONLY - The memory is to be used read-only
VSIP_MEM_CONST - The memory will hold constants
VSIP_MEM_SHARED - The memory will be shared
VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only
VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value
* On success, a pointer to the newly created complex block object is returned.

¢ On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_scalar_f real_data[10]; // Ezample data array
vsip_scalar_f imag_datal[10]; // Ezample imaginary data array
vsip_length length = 10;

vsip_memory_hint hint = VSIP_MEM_NONE;

vsip_cblock_f *block;

// Create a block with split real and imaginary data
block = vsip_cblockbind_f(real_data, imag_data, length, hint);

if (block == NULL) {

Version 1.5, January 2026 - Release Version 20
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

// Handle error
}

// Admit the block before using it
int result = vsip_cblockadmit_f (block, VSIP_TRUE);
if (result != 0) {
// Handle error
}

// Create a block with interleaved data
vsip_scalar_f interleaved_datal[20]; // Ezample interleaved data array
block = vsip_cblockbind_f(interleaved_data, NULL, length, hint);

if (block == NULL) {
// Handle error
}

// Admit the block before using it
result = vsip_cblockadmit_f(block, VSIP_TRUE);
if (result != 0) {
// Handle error
}

Version 1.5, January 2026 - Release Version 21
Copyright © Adelsbach

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.4 vsip_blockrebind_p - Rebind existing block

vsip_scalar_f* vsip_blockrebind_f(vsip_block_f *p, vsip_scalar_f *d);
vsip_scalar_i* vsip_blockrebind_i(vsip_block_i *p, vsip_scalar_i *d);
vsip_scalar_bl* vsip_blockrebind_bl(vsip_block_bl *p, vsip_scalar_bl *d);
vsip_scalar_vi* vsip_blockrebind_vi(vsip_block_vi *p, vsip_scalar_vi *d);
vsip_scalar_mi* vsip_blockrebind_mi(vsip_block_mi *p, vsip_scalar_mi *d);

Description

These functions rebind an existing block p to a new user data array d. The new data array must have the same size as
the originally bound data array.

The block must be in the released state to be rebound. After rebinding, the block must be admitted before it can be
used.

A pointer to the previously bound user data array is returned. If an error occurs, NULL is returned.

Parameters

* vsip_block_p *p: Pointer to the block to be rebound.

* vsip_scalar_p *d: Pointer to the new user data array.

Return Value

* On success, a pointer to the previously bound user data array is returned.

¢ On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_block_f *float_block;
vsip_scalar_f *new_data;
vsip_scalar_f *old_data;

// Assuming float_block has been properly initialized and <s in the released state
old_data = vsip_blockrebind_f (float_block, new_data);

if (old_data == NULL) {
// Handle error
}

// Admit the block before using it
int result = vsip_blockadmit_f (float_block, VSIP_TRUE);
if (result != 0) {
// Handle error
}

vsip_block_i *int_block;
vsip_scalar_i *new_int_data;
vsip_scalar_i *old_int_data;

// Assuming int_block has been properly initialized and is in the released state
old_int_data = vsip_blockrebind_i(int_block, new_int_data);

if (old_int_data == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 22
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS

1.2. BLOCK SUPPORT FUNCTIONS

// Admit the block before using it
result = vsip_blockadmit_i(int_block, VSIP_TRUE);
if (result != 0) {
// Handle error
}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

23

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.5 vsip_cblockrebind_p - Rebind existing block (complex)

void vsip_cblockrebind_f(vsip_cblock_f *p, vsip_scalar_f *r, vsip_scalar_f *i, vsip_scalar_f #**rr, vsip_sc

Description

This function rebinds an existing complex block p to new real and imaginary part arrays r and i. If i is NULL, it is
implied that r points to an interleaved array. The new array(s) must have the same size as the originally bound data
array(s).

The block must be in the released state to be rebound. After rebinding, the block must be admitted before it can be
used.

The previously bound data array(s) are stored in rr and ir. If the originally bound data is interleaved, ir will be set
to NULL. On error, both rr and ir will be set to NULL.

Parameters
* vsip_cblock_p *p: Pointer to the complex block to be rebound.

* vsip_scalar_p *r: Pointer to the new real part array.

* vsip_scalar_p xi: Pointer to the new imaginary part array. If NULL, r is assumed to point to an interleaved
array.

* vsip_scalar_p #**rr: Pointer to store the previously bound real part array.

* vsip_scalar_p #*xir: Pointer to store the previously bound imaginary part array. Will be NULL if the original
data is interleaved.

Error Handling

On error, both rr and ir are set to NULL.

Example

vsip_cblock_f *block;

vsip_scalar_f *new_real_part;

vsip_scalar_f #*new_imag_part = NULL; // For interleaved data
vsip_scalar_f *old_real_part;

vsip_scalar_f *old_imag_part;

// Assuming block has been properly initialized and is in the released state
vsip_cblockrebind_f (block, new_real_part, new_imag_part, &old_real_part, &old_imag_part);

if (old_real_part == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 24
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

1.2.6 vsip_dblockadmit_p - Admit block data

int vsip_blockadmit_f (vsip_block_f *b, vsip_scalar_bl s);
int vsip_blockadmit_i(vsip_block_i *b, vsip_scalar_bl s);
int vsip_blockadmit_bl(vsip_block_bl *b, vsip_scalar_bl s);
int vsip_blockadmit_vi(vsip_block_vi *b, vsip_scalar_bl s);
int vsip_blockadmit_mi(vsip_block_mi *b, vsip_scalar_bl s);
int vsip_cblockadmit_f(vsip_cblock_f*, vsip_scalar_bl s);
Description

These functions admit user data to the given block b. After calling this function, the user array may no longer be man-
ually manipulated outside of VSIPL routines. The boolean flag s indicates whether the user data should be consistent
with the block data. In most cases, s should be set to VSIP_TRUE.

Parameters

* vsip_dblock_p xb: Pointer to the block to which user data is to be admitted.

e vsip_scalar_bl s: Boolean flag indicating whether the user data should be consistent with the block data.

Return Value
¢ Returns 0 on success.

¢ Returns a non-zero value on error.

Error Handling

If an error occurs, the function returns a non-zero value.

Example

vsip_block_f *float_block;
vsip_scalar_bl consistent = VSIP_TRUE;
int result;

// Assuming float_block has been properly initialized
result = vsip_blockadmit_f (float_block, consistent);

if (result '= 0) {
// Handle error
}

Version 1.5, January 2026 - Release Version 25
Copyright © Adelsbach

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.7 vsip_blockfind_p - Get user data

vsip_scalar_f* vsip_blockfind_f(const vsip_block_f *p);
vsip_scalar_i* vsip_blockfind_i(const vsip_block_i *p);
vsip_scalar_bl* vsip_blockfind_bl(const vsip_block_bl *p);
vsip_scalar_vi* vsip_blockfind_vi(const vsip_block_vi *p);
vsip_scalar_mi* vsip_blockfind_mi(const vsip_block_mi *p);

Description

These functions return a pointer to the user data array bound to the given block p. The block must have been bound
previously and must be in the released state before calling these functions.

Parameters

* const vsip_block_p *p: Pointer to the block whose user data array is to be queried.

Return Value

¢ On success, a pointer to the user data array is returned.

¢ On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_block_f *float_block;
vsip_scalar_f *float_data;

// Assuming float_block has been properly initialized, bound, and released
float_data = vsip_blockfind_f (float_block);

if (float_data == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 26
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

1.2.8 vsip_cblockfind_p - Get user data (complex)

void vsip_cblockfind_f (const vsip_cblock_f *p, vsip_scalar_f #*xrr, vsip_scalar_f *x*ri);

Description

This function queries the user data array(s) of the given complex block p. Depending on the data format, the function
sets the pointers rr and ri accordingly:

e Ifthe data is in interleaved format, only rr will be set, and ri will be set to NULL.
¢ If the data is in split format, both rr and ri will be set to point to the real and imaginary parts, respectively.

The block must have been bound previously and must be in the released state before calling this function.

Parameters
* const vsip_cblock_p *p: Pointer to the complex block whose user data arrays are to be queried.
* vsip_scalar_p #**rr: Pointer to the real part of the user array.

* vsip_scalar_p #*xri: Pointer to the imaginary part of the user array.

Error Handling

On error, both rr and ri are set to NULL.

Example

vsip_cblock_f *block;
vsip_scalar_f *real_part;
vsip_scalar_f *imag_part;

// Assuming block has been properly initialized, bound, and released
vsip_cblockfind_f (block, &real_part, &imag_part);

if (real_part == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 27
Copyright © Adelsbach

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.9 vsip_blockrelease_p - Release a block

vsip_scalar_f* vsip_blockrelease_f(vsip_block_f *b, vsip_scalar_bl u);

vsip_scalar_i* vsip_blockrelease_i(vsip_block_i *b,vsip_scalar_bl u);

vsip_scalar_bl* vsip_blockrelease_bl(vsip_block_bl *b,vsip_scalar_bl u);

vsip_scalar_vi* vsip_blockrelease_vi(vsip_block_vi *b,vsip_scalar_bl u);

vsip_scalar_mi* vsip_blockrelease_mi(vsip_block_mi *b,vsip_scalar_bl u);

Description

These functions release the user arrays in a block b and return a pointer to the user data array. The flag u determines
whether the data must be maintained during the state change. The block must have been bound previously.

Parameters

* vsip_block_p *: Pointer to the block to be released.

* vsip_scalar_bl u: Flag indicating whether the data should be maintained.

Return Value
¢ On success, a pointer to the user data array is returned.

¢ On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_block_f *float_block;
vsip_scalar_bl maintain_data = VSIP_TRUE;
vsip_scalar_f *float_data;

// Assuming float_block has been properly initialized and bound
float_data = vsip_blockrelease_f(float_block, maintain_data);

if (float_data == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 28
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.2. BLOCK SUPPORT FUNCTIONS

1.2.10 vsip_cblockrelease_p - Release a block (complex)

void vsip_cblockrelease_f(vsip_cblock_f *b, vsip_scalar_bl u, vsip_scalar_f **rr, vsip_scalar_f #**ri);

Description

This function releases the complex block b and queries the user array(s). Depending on the data format, the function
sets the pointers rr and ri accordingly:

¢ Ifthe data is in interleaved format, only rr will be set, and ri will be set to NULL.

¢ If the data is in split format, both rr and ri will be set to point to the real and imaginary parts, respectively.
The flag u determines whether the data must be maintained during the state change. The block must have been bound
previously and must be in the released state before calling this function.
Parameters

* vsip_cblock_p #b: Pointer to the complex block to be released.

* vsip_scalar_bl u: Flag indicating whether the data should be maintained.

* vsip_scalar_p **rr: Pointer to the real part of the user array.

* vsip_scalar_p #*xri: Pointer to the imaginary part of the user array.

Error Handling

On error, both rr and ri are set to NULL.

Example

vsip_cblock_f *block;

vsip_scalar_bl maintain_data = VSIP_TRUE;
vsip_scalar_f *real_part;

vsip_scalar_f *imag_part;

// Assuming block has been properly initialized and bound
vsip_cblockrelease_f (block, maintain_data, &real_part, &imag_part);

if (real_part == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 29
Copyright © Adelsbach

1.2. BLOCK SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.2.11 vsip_dblockdestroy_p - Destroy a block

void vsip_blockdestroy_f(vsip_block_f *b);
void vsip_blockdestroy_i(vsip_block_i *b);
void vsip_blockdestroy_bl(vsip_block_bl *b);
void vsip_blockdestroy_vi(vsip_block_vi *b);
void vsip_blockdestroy_mi(vsip_block_mi *b);
void vsip_cblockdestroy_f(vsip_cblock_f #b);

Description

These functions destroy the block specified by the pointer b. Destroying a block involves deallocating the memory
associated with it and performing any necessary cleanup operations. After calling one of these functions, the block
pointer b becomes invalid and should not be used further.

Parameters

e vsip_dblock_p *b Pointer to a floating-point or integer block to be destroyed.

Return Value

These functions do not return a value.

Example

vsip_block_f *block = vsip_blockcreate_f (10, VSIP_MEM_NONE) ;
// Use the block...
vsip_blockdestroy_f(block); // Destroy the block when done

Notes

Ensure that the block pointer is valid and has been properly initialized before calling these functions. Attempting to
destroy an already destroyed block or an invalid pointer may result in undefined behavior.

Version 1.5, January 2026 - Release Version 30
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3 Vector View Support Functions

Version 1.5, January 2026 - Release Version 31
Copyright © Adelsbach

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.1 vsip_dvcreate_p - Create a Vector View

typedef enum _vsip_memory_hint {
VSIP_MEM_NONE =0,
VSIP_MEM_RDONLY
VSIP_MEM_CONST =
VSIP_MEM_SHARED =
VSIP_MEM_SHARED_RDONLY
VSIP_MEM_SHARED_CONST

} vsip_memory_hint;

s

2

2

>

O W N

vsip_vview_f* vsip_vcreate_f(vsip_length n, vsip_memory_hint h);

vsip_vview_bl* vsip_vcreate_bl(vsip_length n, vsip_memory_hint h);
vsip_vview_vi* vsip_vcreate_vi(vsip_length n, vsip_memory_hint h);
vsip_vview_mi* vsip_vcreate_mi(vsip_length n, vsip_memory_hint h);
vsip_cvview_f* vsip_cvcreate_f (vsip_length n, vsip_memory_hint h);

Description
This function creates a vector view of the specified length n with a given memory hint h. The memory hint describes
how the data is intended to be used, such as read-only, constant, or shared memory.

Parameters

* vsip_length n: The number of elements in the vector view. Must be greater than 0.

* vsip_memory_hint h: Memory hint for the vector view, indicating properties such as read-only, constant, or
shared memory.

VSIP_MEM_NONE - No memory hint

VSIP_MEM_RDONLY - The memory is to be used read-only

VSIP_MEM_CONST - The memory will hold constants

VSIP_MEM_SHARED - The memory will be shared

VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only
VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

¢ On success, a pointer to the newly created vector view object is returned.

¢ On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_length length = 10;
vsip_memory_hint hint = VSIP_MEM_NONE;
vsip_vview_f *vector_view;

// Create a vector view
vector_view = vsip_vcreate_f(length, hint);

if (vector_view == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 32
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.2 vsip_dvbind_p - Bind a Vector View to a Data Block
vsip_vview_f* vsip_vbind_f (const vsip_block_f* b, vsip_offset o, vsip_stride s, vsip_length n);
vsip_vview_i* vsip_vbind_i(const vsip_block_i* b, vsip_offset o, vsip_stride s, vsip_length n);
vsip_vview_bl* vsip_vbind_bl(const vsip_block_bl* b, vsip_offset o, vsip_stride s, vsip_length n);
vsip_vview_vi* vsip_vbind_vi(const vsip_block_vi* b, vsip_offset o, vsip_stride s, vsip_length n);
vsip_vview_mi* vsip_vbind_mi(const vsip_block_mi* b, vsip_offset o, vsip_stride s, vsip_length n);
vsip_vview_i* vsip_cvbind_f(const vsip_cblock_f* b, vsip_offset o, vsip_stride s, vsip_length n);
Description
This function binds a vector view to an existing data block b with a specified offset o, stride s, and length n. The vector
view provides a view into the data block starting from the offset and stepping by the stride for the specified length.
Parameters

* const vsip_dblock_p* b: Pointer to the data block to which the vector view will be bound.

* vsip_offset o: Offset within the data block where the vector view starts.

* vsip_stride s: Stride between elements in the vector view.

* vsip_length n: The number of elements in the vector view.

Return Value
¢ On success, a pointer to the newly created vector view object is returned.

® On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_block_f *data_block;
vsip_offset offset = O;
vsip_stride stride = 1;
vsip_length length = 10;
vsip_vview_f *vector_view;

// Assuming data_block has been properly initialized
vector_view = vsip_vbind_f (data_block, offset, stride, length);

if (vector_view == NULL) {

// Handle error
}

// The wector view s mow bound to the data block

Version 1.5, January 2026 - Release Version 33
Copyright © Adelsbach

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.3 vsip_dvcloneview_p - Clone a Vector View

vsip_vview_f* vsip_vcloneview_f(const vsip_vview_f* v);

vsip_vview_bl* vsip_vcloneview_bl(const vsip_vview_bl* v);
vsip_vview_vi* vsip_vcloneview_vi(const vsip_vview_vi* v);
vsip_vview_mi* vsip_vcloneview_mi(const vsip_vview_mi* v);
vsip_cvview_f* vsip_cvcloneview_f (const vsip_cvview_f* v);

Description

This function creates a new vector view that shares the same underlying data block as the input vector view but has its
own independent view parameters. The cloned view references the same data as the original view but maintains its own
metadata (length, stride, offset, and block).

Parameters

* const vsip_dvview_p* v: Pointer to the source complex vector view to be cloned.

Return Value

* On success, returns a pointer to the newly created complex vector view that shares data with the input view.

* On error, returns NULL.

Example

vsip_cvview_f *original_vector;
vsip_cvview_f *cloned_vector;
vsip_length 1i;

// Create a complexz vector
original_vector = vsip_cvcreate_f (10, VSIP_MEM_NONE);

// Clone the wvector view
cloned_vector = vsip_cvcloneview_f (original_vector);

if (cloned_vector == NULL) {
// Handle error
}

Notes

* The cloned view shares the same underlying data block as the source complex vector.
¢ Changes to the data through one view will be visible through all other views that share the same data block.

* The cloned view has the same length, stride, and offset as the original view.

Version 1.5, January 2026 - Release Version 34
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.4 vsip_dvget_p - Get an Element from a Vector View

vsip_scalar_f vsip_vget_f(const vsip_vview_f* v, vsip_index j);

vsip_scalar_bl vsip_vget_bl(const vsip_vview_bl* v, vsip_index j);
vsip_scalar_vi vsip_vget_vi(const vsip_vview_vi* v, vsip_index j);
vsip_scalar_mi vsip_vget_mi(const vsip_vview_mi* v, vsip_index j);
vsip_cscalar_f vsip_cvget_f(const vsip_cvview_f* v, vsip_index j);

Description

This function retrieves the element at the specified index j from the vector view v.

Parameters

* const vsip_dvview_p* v: Pointer to the vector view.

¢ vsip_index j: Index of the element to retrieve.

Return Value

* The value of the element at the specified index.

Example

vsip_vview_f *vector_view;
vsip_index index = 3;
vsip_scalar_f value;

// Assuming vector_view has been properly initialized
value = vsip_vget_f (vector_view, index);

Version 1.5, January 2026 - Release Version 35
Copyright © Adelsbach

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.5 vsip_dvput_p - Set an Element in a Vector View

void vsip_vput_f(const vsip_vview_f* v, vsip_index j, vsip_scalar_f x);

void vsip_vput_bl(const vsip_vview_bl* v, vsip_index j, vsip_scalar_bl x);
void vsip_vput_vi(const vsip_vview_vix* v, vsip_index j, vsip_scalar_vi x);
void vsip_vput_mi(const vsip_vview_mi* v, vsip_index j, vsip_scalar_mi x);
void vsip_cvput_f(const vsip_cvview_f* v, vsip_index j, vsip_cscalar_f x);

Description

This function sets the element at the specified index j in the vector view v to the value x.

Parameters
* const vsip_dvview_p* v: Pointer to the vector view.
¢ vsip_index j: Index of the element to set.

¢ vsip_dscalar_p x: The new value for the element.

Example

vsip_vview_f *vector_view;
vsip_index index = 3;
vsip_scalar_f new_value = 10.0;

// Assuming vector_view has been properly initialized
vsip_vput_f (vector_view, index, new_value);

Version 1.5, January 2026 - Release Version 36
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.6 vsip_dvsubview_p - Create a Subview of a Vector View
vsip_vview_f* vsip_vsubview_f(const vsip_vview_f* v, vsip_index j, vsip_length n);
vsip_vview_bl* vsip_vsubview_bl(const vsip_vview_bl* v, vsip_index j, vsip_length n);
vsip_vview_vi* vsip_vsubview_vi(const vsip_vview_vi* v, vsip_index j, vsip_length n);
vsip_vview_mi* vsip_vsubview_mi(const vsip_vview_mi* v, vsip_index j, vsip_length n);
vsip_cvview_f* vsip_cvsubview_f (const vsip_cvview_f* v, vsip_index j, vsip_length n);
Description
This function creates a subview of an existing vector view v, starting from the index j and extending for n elements. The
subview provides a view into a subset of the original vector view.
Parameters

* const vsip_dvview_p* v: Pointer to the original vector view from which the subview will be created.

* vsip_index j: Starting index within the original vector view for the subview.

* vsip_length n: The number of elements in the subview.

Return Value
* On success, a pointer to the newly created subview object is returned.

¢ On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_vview_f *original_view;
vsip_index start_index = 5;
vsip_length subview_length = 10;
vsip_vview_f *subview;

// Assuming original_view has been properly initialized
subview = vsip_vsubview_f (original_view, start_index, subview_length);

if (subview == NULL) {
// Handle error

// The subview is now a view into a subset of the original vector view

Version 1.5, January 2026 - Release Version 37
Copyright © Adelsbach

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.7 vsip_vrealview_p - Get the Real Part View of a Complex Vector View

vsip_vview_f* vsip_vrealview_f (const vsip_cvview_f* v);

Description

This function returns a view of the real part of the complex vector view v.

Parameters

* const vsip_cvview_p* v: Pointer to the complex vector view.

Return Value

¢ On success, a pointer to the real part view of the complex vector view is returned.

¢ On error, NULL is returned.

Example

vsip_cvview_f *complex_vector_view;
vsip_vview_f *real_part_view;

// Assuming complex_vector_view has been properly initialized
real_part_view = vsip_vrealview_f (complex_vector_view);

if (real_part_view == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

38

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.8 vsip_vimagview_p - Get the Imaginary Part View of a Complex Vector View

vsip_vview_f* vsip_vimagview_f (const vsip_cvview_f* v);

Description

This function returns a view of the imaginary part of the complex vector view v.

Parameters

* const vsip_cvview_p* v: Pointer to the complex vector view.

Return Value
* On success, a pointer to the imaginary part view of the complex vector view is returned.

¢ On error, NULL is returned.

Example

vsip_cvview_f *complex_vector_view;
vsip_vview_f *imaginary_part_view;

// Assuming complex_vector_view has been properly initialized
imaginary_part_view = vsip_vimagview_f (complex_vector_view) ;

if (imaginary_part_view == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 39
Copyright © Adelsbach

1.3. VECTOR VIEW SUPPORT FUNCTIONS

CHAPTER 1. SUPPORT FUNCTIONS

1.3.9 vsip_dvgetattrib_p - Get the Attributes of a Vector View

typedef struct _vsip_vattr_f {
vsip_offset offset;
vsip_stride stride;
vsip_length length;
vsip_block_f x*block;
} vsip_vattr_f;
/* same for other datatypes with the respective vsip_dblock_p */

void
void
void
void
void
void

vsip_vgetattrib_f (const vsip_vview_f* v, vsip_vattr_f *a);
vsip_vgetattrib_i(const vsip_vview_i* v, vsip_vattr_i *a);
vsip_vgetattrib_bl(const vsip_vview_bl* v, vsip_vattr_bl *a);
vsip_vgetattrib_vi(const vsip_vview_vi* v, vsip_vattr_vi *a);
vsip_vgetattrib_mi(const vsip_vview_mi* v, vsip_vattr_mi *a);
vsip_cvgetattrib_f(const vsip_cvview_f* v, vsip_cvattr_f *a);

Description

This function retrieves the attributes of the vector view v and stores them in the structure pointed to by a.

Parameters

* const vsip_dvview_p* v: Pointer to the vector view.

e vsip_dvattr_p *a: Pointer to a structure where the attributes will be stored.

Example

vsip_
vsip_

vview_f *vector_view;
vattr_f attributes;

// Assuming vector_view has been properly initialized

vsip_

vgetattrib_f (vector_view, &attributes);

// The attributes of the vector view are now stored in 'attributes'’

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

40

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.10 vsip_dvputattrib_p - Set the Attributes of a Vector View

typedef struct _vsip_vattr_f {
vsip_offset offset;
vsip_stride stride;
vsip_length length;
vsip_block_f x*block;
} vsip_vattr_f;
/* same for other datatypes with the respective vsip_dblock_p */

vsip_vview_f* vsip_vputattrib_f(vsip_vview_f* v, const vsip_vattr_f xa);
vsip_vview_i* vsip_vputattrib_i(vsip_vview_i* v, const vsip_vattr_i *a);
vsip_vview_bl* vsip_vputattrib_bl(vsip_vview_bl* v, const vsip_vattr_bl *a);
vsip_vview_vi* vsip_vputattrib_vi(vsip_vview_vi* v, const vsip_vattr_vi *a);
vsip_vview_mi* vsip_vputattrib_mi(vsip_vview_mi* v, const vsip_vattr_mi *a);
vsip_cvview_f* vsip_cvputattrib_f(vsip_cvview_f* v, const vsip_cvattr_f *a);

Description

This function sets the attributes of the vector view v to the values specified in the structure pointed to by a.

Parameters

¢ vsip_dvview_p* v: Pointer to the vector view.

* const vsip_dvattr_p *a: Pointer to a structure containing the new attributes.

Return Value
* On success, a pointer to the modified vector view is returned.

¢ On error, NULL is returned.

Example
vsip_vview_f *vector_view;

vsip_vattr_f new_attributes;

// Assuming vector_view has been properly initialized and new_attributes is set
vector_view = vsip_vputattrib_f (vector_view, &new_attributes);

if (vector_view == NULL) {
// Handle error

Version 1.5, January 2026 - Release Version 41
Copyright © Adelsbach

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.11 vsip_dvgetblock_p - Get the Data Block of a Vector View

vsip_block_f* vsip_vgetblock_f(const vsip_vview_f* v);

vsip_block_bl* vsip_vgetblock_bl(const vsip_vview_bl* v);
vsip_block_vi* vsip_vgetblock_vi(const vsip_vview_vix* v);
vsip_block_mi* vsip_vgetblock_mi(const vsip_vview_mi* v);
vsip_cblock_f* vsip_cvgetblock_f(const vsip_cvview_f* v);

Description

This function returns the data block associated with the vector view v.

Parameters

* const vsip_dvview_p* v: Pointer to the vector view.

Return Value
* On success, a pointer to the data block is returned.

¢ On error, NULL is returned.

Example
vsip_vview_f *vector_view;

vsip_block_f *data_block;

// Assuming vector_view has been properly initialized
data_block = vsip_vgetblock_f(vector_view);

if (data_block == NULL) {
// Handle error
}

X

Version 1.5, January 2026 - Release Version 42
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.12 vsip_dvgetlength_p - Get the Length of a Vector View

vsip_length vsip_vgetlength_f (const vsip_vview_f* v);

vsip_length vsip_vgetlength_bl(const vsip_vview_bl* v);
vsip_length vsip_vgetlength_vi(const vsip_vview_vik v);
vsip_length vsip_vgetlength_mi(const vsip_vview_mi* v);
vsip_length vsip_cvgetlength_f (const vsip_cvview_f* v);

Description

This function returns the length of the vector view v.

Parameters

* const vsip_dvview_p* v: Pointer to the vector view.

Return Value

* The length of the vector view.

Example
vsip_vview_f *vector_view;

vsip_length length;

// Assuming vector_view has been properly initialized
length = vsip_vgetlength_f (vector_view);

Version 1.5, January 2026 - Release Version 43
Copyright © Adelsbach

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.13 vsip_dvputlength_p - Set the Length of a Vector View

vsip_vview_f* vsip_vputlength_f (vsip_vview_f* v, vsip_length n);

vsip_vview_bl* vsip_vputlength_bl(vsip_vview_bl* v, vsip_length n);
vsip_vview_vi* vsip_vputlength_vi(vsip_vview_vi* v, vsip_length n);
vsip_vview_mi* vsip_vputlength_mi(vsip_vview_mi* v, vsip_length n);
vsip_cvview_f* vsip_cvputlength_f (vsip_cvview_f* v, vsip_length n);

Description

This function sets the length of the vector view v to the specified value n.

Parameters

¢ vsip_dvview_p* v: Pointer to the vector view.

¢ vsip_length n: The new length of the vector view.

Return Value
* On success, a pointer to the modified vector view is returned.

¢ On error, NULL is returned.

Example

vsip_vview_f *vector_view;
vsip_length new_length = 15;

// Assuming vector_view has been properly initialized
vector_view = vsip_vputlength_f (vector_view, new_length);

if (vector_view == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 44
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS

1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.14 vsip_dvgetstride_p - Get the Stride of a Vector View

vsip_stride vsip_vgetstride_f(const vsip_vview_f* v);

vsip_stride vsip_vgetstride_bl(const vsip_vview_bl* v);
vsip_stride vsip_vgetstride_vi(const vsip_vview_vik v);
vsip_stride vsip_vgetstride_mi(const vsip_vview_mi* v);
vsip_stride vsip_cvgetstride_f (const vsip_cvview_f* v);

Description

This function returns the stride between elements in the vector view v.

Parameters

* const vsip_dvview_p* v: Pointer to the vector view.

Return Value

¢ The stride between elements in the vector view.

Example
vsip_vview_f *vector_view;

vsip_stride stride;

// Assuming vector_view has been properly initialized
stride = vsip_vgetstride_f (vector_view);

Version 1.5, January 2026 - Release Version

Copyright © Adelsbach

45

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.15 vsip_dvputstride_p - Set the Stride of a Vector View

vsip_vview_f* vsip_vputstride_f(vsip_vview_f* v, vsip_stride s);

vsip_vview_bl* vsip_vputstride_bl(vsip_vview_bl* v, vsip_stride s);
vsip_vview_vi* vsip_vputstride_vi(vsip_vview_vi* v, vsip_stride s);
vsip_vview_mi* vsip_vputstride_mi(vsip_vview_mi* v, vsip_stride s);
vsip_cvview_f* vsip_cvputstride_f (vsip_cvview_f* v, vsip_stride s);

Description

This function sets the stride between elements in the vector view v to the specified value s.

Parameters

¢ vsip_dvview_p* v: Pointer to the vector view.

* vsip_stride s: The new stride between elements.

Return Value
* On success, a pointer to the modified vector view is returned.

¢ On error, NULL is returned.

Example
vsip_vview_f *vector_view;

vsip_stride new_stride = 2;

// Assuming vector_view has been properly initialized
vector_view = vsip_vputstride_f(vector_view, new_stride);

if (vector_view == NULL) {
// Handle error

Version 1.5, January 2026 - Release Version 46
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.16 vsip_dvgetoffset_p - Get the Offset of a Vector View

vsip_offset vsip_vgetoffset_f(const vsip_vview_f* v);

vsip_offset vsip_vgetoffset_bl(const vsip_vview_bl* v);
vsip_offset vsip_vgetoffset_vi(const vsip_vview_vik v);
vsip_offset vsip_vgetoffset_mi(const vsip_vview_mi* v);
vsip_offset vsip_cvgetoffset_f (const vsip_cvview_f* v);

Description

This function returns the offset within the data block where the vector view v starts.

Parameters

* const vsip_dvview_p* v: Pointer to the vector view.

Return Value

¢ The offset within the data block.

Example
vsip_vview_f *vector_view;

vsip_offset offset;

// Assuming vector_view has been properly initialized
offset = vsip_vgetoffset_f(vector_view);

Version 1.5, January 2026 - Release Version 47
Copyright © Adelsbach

1.3. VECTOR VIEW SUPPORT FUNCTIONS

CHAPTER 1. SUPPORT FUNCTIONS

1.3.17 vsip_dvputoffset_p - Set the Offset of a Vector View

vsip_vview_f* vsip_vputoffset_f(vsip_vview_f* v,
vsip_vview_bl* vsip_vputoffset_bl(vsip_vview_blx*
vsip_vview_vi* vsip_vputoffset_vi(vsip_vview_vix*
vsip_vview_mi* vsip_vputoffset_mi(vsip_vview_mix*
vsip_cvview_f* vsip_cvputoffset_f (vsip_cvview_fx*

Description

vsip_offset o);

vsip_offset
vsip_offset
vsip_offset
vsip_offset

0);
0);
0);
0);

This function sets the offset within the data block for the vector view v to the specified value o.

Parameters

¢ vsip_dvview_p* v: Pointer to the vector view.

¢ vsip_offset o: The new offset within the data block.

Return Value

* On success, a pointer to the modified vector view is returned.

¢ On error, NULL is returned.

Example

vsip_vview_f *vector_view;
vsip_offset new_offset = 5;

// Assuming vector_view has been properly initialized
vector_view = vsip_vputoffset_f(vector_view, new_offset);

if (vector_view == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

48

CHAPTER 1. SUPPORT FUNCTIONS 1.3. VECTOR VIEW SUPPORT FUNCTIONS

1.3.18 vsip_dvdestroy_p - Destroy a Vector View

vsip_block_f* vsip_vdestroy_f (vsip_vview_f* v);

vsip_block_i* vsip_vdestroy_i(vsip_vview_ix v);

vsip_block_bl* vsip_vdestroy_bl(vsip_vview_bl* v);

vsip_block_vi* vsip_vdestroy_vi(vsip_vview_vi* v);

vsip_block_mi* vsip_vdestroy_mi(vsip_vview_mi* v);

vsip_cblock_f* vsip_cvdestroy_f (vsip_cvview_f* v);

Description

This function destroys a vector view v and returns a pointer to the underlying data block. After calling this function,
the vector view is no longer valid, but the data block can still be used.

Parameters

* vsip_dvview_p* v: Pointer to the vector view to be destroyed.

Return Value
* On success, a pointer to the underlying data block is returned.

® On error, NULL is returned.

Error Handling

If an error occurs, the function returns NULL.

Example

vsip_vview_f *vector_view;
vsip_block_f *data_block;

// Assuming vector_view has been properly initialized
data_block = vsip_vdestroy_f(vector_view);

if (data_block == NULL) {

// Handle error
}

// The data block can still be used after the wvector view ts destroyed

Version 1.5, January 2026 - Release Version 49
Copyright © Adelsbach

1.3. VECTOR VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.3.19 vsip_dvalldestroy_p - Destroy a Vector View and Its Data Block

void vsip_valldestroy_f (vsip_vview_f *v);

void vsip_valldestroy_bl(vsip_vview_bl *v);
void vsip_valldestroy_vi(vsip_vview_vi *v);
void vsip_valldestroy_mi(vsip_vview_mi *v);
void vsip_cvalldestroy_f(vsip_cvview_f* v);

Description

This function destroys a vector view v and its underlying data block. After calling this function, both the vector view
and the data block are no longer valid.

Parameters

* vsip_dvview_p *v: Pointer to the vector view to be destroyed along with its data block.

Example

vsip_vview_f *vector_view;

// Assuming vector_view has been properly initialized
vsip_valldestroy_f (vector_view);

// Both the wvector view and its data block are now invalid

Version 1.5, January 2026 - Release Version 50
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4 Matrix View Support Functions

Version 1.5, January 2026 - Release Version 51
Copyright © Adelsbach

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.1 vsip_dmcreate_p - Create a Matrix View

typedef enum _vsip_memory_hint {
VSIP_MEM_NONE =0,
VSIP_MEM_RDONLY
VSIP_MEM_CONST =
VSIP_MEM_SHARED =
VSIP_MEM_SHARED_RDONLY
VSIP_MEM_SHARED_CONST

} vsip_memory_hint;

s

2

2

>

O W N

typedef enum {
VSIP_ROW = O,
VSIP_COL = 1
} vsip_major;

vsip_mview_f* vsip_mcreate_f (vsip_length row_length, vsip_length col_length,
vsip_major major, vsip_mem_hint hint);
vsip_cmview_f* vsip_cmcreate_f (vsip_length row_length, vsip_length col_length,
vsip_major major, vsip_mem_hint hint);

Description
This function creates a new matrix view with the specified dimensions. The function allocates both a data block and a
matrix view, and binds them together.

Whether the matrix is stored in row- or column major order can be selected using the major argument.
Parameters

* vsip_length row_length: Number of rows in the matrix.

¢ vsip_length col_length: Number of columns in the matrix.

* vsip_major major: Whether the matrix is supposed to be row- or column major.

e vsip_mem_hint hint: Memory allocation hint that can be used to optimize memory access.

VSIP_MEM_NONE - No memory hint

VSIP_MEM_RDONLY - The memory is to be used read-only

VSIP_MEM_CONST - The memory will hold constants

VSIP_MEM_SHARED - The memory will be shared

VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only
VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value
* On success, returns a pointer to the newly created matrix view.

® On error, returns NULL.

Example

vsip_mview_f *matrix;
vsip_length rows = 100;
vsip_length cols = 100;

// Create a 100x100 matriz initialized to 0.0
matrix = vsip_mcreate_f(rows, cols, VSIP_ROW, VSIP_MEM_NONE);

if (matrix == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 52
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

Notes
¢ The created matrix has contiguous memory layout with unit strides in both dimensions.

¢ This function is equivalent to calling vsip_blockcreate_f, then vsip_mbind_f, and finally filling the matrix
with the specified value.

Version 1.5, January 2026 - Release Version 53
Copyright © Adelsbach

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.2 vsip_dmbind_p - Bind a Matrix View to a Block

void vsip_mbind_f (const vsip_block_f* block, vsip_offset offset,
vsip_stride col_stride, vsip_stride col_length,
vsip_length row_length, vsip_length row_length);
void vsip_cmbind_f(const vsip_cblock_f* block, vsip_offset offset,
vsip_stride col_stride, vsip_stride col_length,
vsip_length row_length, vsip_length row_length);
Description

This function binds a matrix view to a section of a data block, allowing access to the block’s data through the matrix
view interface. The binding specifies the location of the matrix within the block, the strides between elements, and the
dimensions of the matrix.

The matrix view becomes a "window" into the block, with the specified dimensions and strides. This allows for
efficient access to submatrices or non-contiguous sections of a larger data block without copying data.

Parameters
* const vsip_dblock_p* block: Pointer to the block of data to bind to.

* vsip_offset offset: The offset (in elements) from the start of the block to the first element of the matrix (0,0
position).

* vsip_stride col_stride: The stride (in elements) between consecutive columns of the matrix.
¢ vsip_length col_length: The number of columns in the matrix view.
¢ vsip_stride row_stride: The stride (in elements) between consecutive rows of the matrix.

¢ vsip_length row_length: The number of rows in the matrix view.

Example

vsip_block_f *block;
vsip_mview_f matrix_view;
vsip_scalar_f *data;
vsip_length block_size = 1000;

// Allocate a block of data
block = vsip_blockcreate_f (block_size, VSIP_MEM_NONE);

// Populate block with data here

// Bind a 10z10 matriz view to the block starting at offset 0
// with contiguous memory layout (col_stride = 1, row_stride = 10)
matrix_view = vsip_mbind_f(block, 0, 1, 10, 10, 10);

Notes

¢ The block must be large enough to contain the matrix view with the specified strides.
* The strides determine how elements are accessed in memory:

— col_stride is the step size between columns (typically 1 for contiguous columns)

— row_stride is the step size between rows (typically equal to the number of columns for contiguous rows)

¢ Non-unit strides allow for accessing non-contiguous sections of the block.

The matrix view does not own the data; the block must remain valid as long as the view is in use.

This function is useful for creating views of submatrices or for implementing specialized matrix layouts.

Version 1.5, January 2026 - Release Version 54
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.3 vsip_dmcloneview_p - Clone a Matrix View
vsip_mview_f* vsip_mcloneview_f (const vsip_mview_f* matrix);
vsip_cmview_f* vsip_cmcloneview_f (const vsip_cmview_f* matrix);
Description

This function creates a new matrix view that shares the same data block as the input matrix view but has its own
independent view parameters. The cloned view references the same underlying data but maintains its own metadata
(dimensions, strides, offset).

This is useful when you need multiple independent views of the same data, or when you want to create a view with
different parameters (like different submatrix boundaries) while sharing the same data storage.

Parameters

* const vsip_dmview_p* matrix: Pointer to the source matrix view to be cloned.

Return Value

* On success, returns a pointer to the newly created matrix view that shares data with the input view.

¢ On error, returns NULL.

Example

vsip_mview_f *original_matrix;
vsip_mview_f *cloned_matrix;

// Clone the matriz view
cloned_matrix = vsip_mcloneview_f (original_matrix) ;

if (cloned_matrix == NULL) {
// Handle error

}

Notes

* The cloned view shares the same underlying data block as the original view.

Changes to the data through one view will be visible through all other views that share the same data block.

The cloned view has the same dimensions, strides, and offset as the original view.
¢ This function is useful for creating multiple independent views of the same data without copying the actual data.

¢ To create a completely independent copy (including the data), use vsip_dmcopy_p _p to copy to a new matrix.

Version 1.5, January 2026 - Release Version 55
Copyright © Adelsbach

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.4 vsip_dmget_p - Get Matrix Element
vsip_scalar_f vsip_mget_f(const vsip_mview_f *v, vsip_index i, vsip_index j);
vsip_cscalar_f vsip_cmget_f(const vsip_cmview_f *v, vsip_index i, vsip_index j);
Description
This function retrieves the value of a specific element from a matrix view. The element is identified by its row and
column indices (0-based).
Parameters
* const vsip_dmview_p* v: Pointer to the matrix view.
¢ vsip_index i: Row index of the element to retrieve (0-based).

¢ vsip_index j: Column index of the element to retrieve (0-based).

Return Value

¢ Returns the value of the matrix element at position (i, j) as a vsip_dscalar_p.

Example

vsip_mview_f *matrix;
vsip_scalar_f value;
vsip_index i, j;

// Create and initialize a matriz
matrix = vsip_mcreate_f(5, 5, VSIP_ROW, VSIP_MEM_NONE);

// Fill the matriz with some walues
for (i = 0; i < 5; i++) {
for (j = 0; j < 5; j++) {
vsip_mput_f (matrix, i, j, 1 * 5 + j + 1);
}
}

// Retrieve specific elements
value = vsip_mget_f(matrix, 0, 0); // Top-left corner
printf ("Element at (0,0): %f\n", value);

value = vsip_mget_f(matrix, 2, 3); // Middle element
printf ("Element at (2,3): %f\n", value);

value = vsip_mget_f (matrix, 4, 4); // Bottom-right corner
printf ("Element at (4,4): %f\n", value);

Notes

* The function does not perform bounds checking and may return an error or undefined value if the indices are out
of range.

¢ For submatrix views, the indices are relative to the submatrix, not the parent matrix.

Version 1.5, January 2026 - Release Version 56
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.5 vsip_dmput_p - Set Matrix Element

void vsip_mput_f (const vsip_mview_f *v, vsip_index i, vsip_index j, vsip_scalar_f vv);
void vsip_cmput_f (const vsip_cmview_f *v, vsip_index i, vsip_index j, vsip_cscalar_f vv);

Description

This function sets the value of a specific element in a matrix view. The element is identified by its row and column

indices (0-based).

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view.
¢ vsip_index i: Row index of the element to set (0-based).
¢ vsip_index j: Column index of the element to set (0-based).

* vsip_dscalar_p vv: The value to assign to the matrix element.

Example
vsip_mview_f *matrix;

vsip_index i, j;

// Create a matriz
matrix = vsip_mcreate_f(5, 5, VSIP_ROW, VSIP_MEM_NONE);

// Set specific elements

vsip_mput_f (matrix, 0, O, 1.0f); // Top-left corner
vsip_mput_f (matrix, 2, 2, 5.0f); // Center element
vsip_mput_f (matrix, 4, 4, 9.0f); // Bottom-right corner

Notes

* The indices are 0-based (first row/column is index 0).
* The function does not perform bounds checking and may cause a memory access error.

* For submatrix views, the indices are relative to the submatrix, not the parent matrix.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

57

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.6 vsip_dmsubview_p - Create a Submatrix View

vsip_mview_f* vsip_msubview_f (const vsip_mview_f* matrix,
vsip_index row_offset, vsip_index col_offset,
vsip_length row_length, vsip_length col_length);
vsip_cmview_f* vsip_cmsubview_f (const vsip_cmview_f* matrix,
vsip_index row_offset, vsip_index col_offset,
vsip_length row_length, vsip_length col_length);

Description

This function creates a new matrix view that represents a submatrix of an existing matrix view. The submatrix is
defined by its offset from the parent matrix and its dimensions. The new view shares the same underlying data block as
the parent matrix but provides access to only the specified subregion.

This operation is efficient as it doesn’t copy any data, but rather creates a new view that references a portion of the
original matrix’s data.

Parameters

* const vsip_mview_f* matrix: Pointer to the source matrix view.

* vsip_index row_offset: The row offset of the submatrix from the parent matrix (0-based).

* vsip_index col_offset: The column offset of the submatrix from the parent matrix (0-based).
* vsip_length row_length: The number of rows in the submatrix.

* vsip_length col_length: The number of columns in the submatrix.

Return Value

* On success, returns a pointer to the newly created submatrix view.

® On error (e.g., if the submatrix would extend beyond the parent matrix boundaries), returns NULL.

Example

vsip_mview_f *parent_matrix;
vsip_mview_f *submatrix;

// Create a parent matriz
parent_matrix = vsip_mcreate_f (100, 100, VSIP_ROW, VSIP_MEM_NONE);

// Create a 50z50 submatriz starting at row 25, column 25
submatrix = vsip_msubview_f (parent_matrix, 25, 25, 50, 50);

if (submatrix == NULL) {
// Handle error (e.g., invalid submatriz dimensions)

}

Notes

* The submatrix view shares the same underlying data block as the parent matrix.
* Modifications to the submatrix will affect the parent matrix and vice versa.

* The submatrix must be entirely contained within the parent matrix.

* The strides of the submatrix are inherited from the parent matrix.

¢ This function is useful for working with portions of a matrix without copying data.

¢ For non-contiguous submatrices or more complex views, consider using vsip_dmbind_p directly.

Version 1.5, January 2026 - Release Version 58
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.7 vsip_dmtransview_p - Create a Transposed Matrix View
vsip_mview_f* vsip_mtransview_f(const vsip_mview_f* matrix);
vsip_cmview_f* vsip_cmtransview_f (const vsip_cmview_f* matrix);
Description

This function creates a new matrix view that represents the transpose of the input matrix. The transposed view shares
the same underlying data block as the original matrix but presents it with rows and columns swapped. This operation
is efficient as it doesn’t copy any data, but rather creates a new view with transposed dimensions and strides.

For an m x n input matrix, the transposed view will be an n x m matrix where the element at position (i, j) in the
transposed view corresponds to the element at position (j,7) in the original matrix.

Parameters

* const vsip_dmview_p* matrix: Pointer to the source matrix view to be transposed.

Return Value

* On success, returns a pointer to the newly created transposed matrix view.

¢ On error, returns NULL.

Example

vsip_mview_f *original_matrix;
vsip_mview_f *transposed_matrix;
vsip_length i, j;

// Create a 4z3 matriz
original_matrix = vsip_mcreate_f(4, 3, VSIP_ROW, VSIP_MEM_NONE);

// Fill the matriz with some wvalues
for (i = 0; i < 4; i++) {
for (j = 0; j < 3; j++) {
vsip_mput_f (original _matrix, i, j, 1 * 3 + j + 1);
}
}

// Create a transposed view (3z4)
transposed_matrix = vsip_mtransview_f(original_matrix);

if (transposed_matrix == NULL) {
// Handle error
}

// Now transposed_matriz is a 3z4 view of the original 4z3 matriz data
// Accessing transposed_matriz[0][1] is equivalent to original_matriz[1][0]

Notes

* The transposed view shares the same underlying data block as the original matrix.
¢ Modifications to the transposed view will affect the original matrix and vice versa.

* The transposed view has swapped dimensions compared to the original matrix.

The strides of the transposed view are adjusted to provide the transposed access pattern.

* This operation is efficient as it doesn’t copy any data, only creates a new view.

Version 1.5, January 2026 - Release Version 59
Copyright © Adelsbach

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.8 vsip_dmrowview_p - Create a Row Vector View of a Matrix
vsip_vview_f* vsip_mrowview_f (const vsip_mview_f* matrix, vsip_index row_index);
vsip_cvview_f* vsip_cmrowview_f (const vsip_cmview_f* matrix, vsip_index row_index);
Description

This function creates a vector view that represents a single row of a matrix. The resulting vector view shares the same
underlying data block as the matrix but provides access to only the specified row. This operation is efficient as it doesn’t
copy any data, but rather creates a new view that references the row data.

The created vector view has a length equal to the number of columns in the source matrix. The vector view maintains
the same data type as the matrix elements.
Parameters

* const vsip_dmview_p* matrix: Pointer to the source matrix view.

* vsip_index row_index: The index of the row to extract (0-based).

Return Value
* On success, returns a pointer to the newly created vector view representing the specified row.

® On error (e.g., if the row index is out of bounds), returns NULL.

Example

vsip_mview_f *matrix;
vsip_vview_f *row_vector;
vsip_length i, j;

// Create a 5x10 matriz
matrix = vsip_mcreate_f(5, 10, VSIP_ROW, VSIP_MEM_NONE);

// Fill the matriz with some wvalues
for (i = 0; i < 5; i++) {
for (j = 0; j < 10; j++) {
vsip_mput_f (matrix, i, j, 1 * 10 + j + 1);

}

// Get a vector view of the 3rd row (indez 2)
row_vector = vsip_mrowview_f (matrix, 2);

if (row_vector == NULL) {
// Handle error

// Now row_vector represents the 3rd row of the matriz
// and has length equal to the number of columns (10)
Notes
¢ The row vector view shares the same underlying data block as the source matrix.
* Modifications to the row vector will affect the source matrix and vice versa.
* The row index must be within the valid range of the matrix (0 < row_index < number of rows).
¢ The created vector view has a length equal to the number of columns in the source matrix.
¢ The vector view maintains the same stride as the row stride of the source matrix.

¢ This operation is efficient as it doesn’t copy any data, only creates a new view.

Version 1.5, January 2026 - Release Version 60
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.9 vsip_dmcolview_p - Create a Column Vector View of a Matrix
vsip_vview_f* vsip_mcolview_f (const vsip_mview_f* matrix, vsip_index col_index);
vsip_cvview_f* vsip_cmcolview_f(const vsip_cmview_f* matrix, vsip_index col_index);
Description

This function creates a vector view that represents a single column of a matrix. The resulting vector view shares the
same underlying data block as the matrix but provides access to only the specified column. This operation is efficient as
it doesn’t copy any data, but rather creates a new view that references the row data.

The created vector view has a length equal to the number of rows in the source matrix. The vector view maintains
the same data type as the matrix elements.
Parameters

* const vsip_dmview_p* matrix: Pointer to the source matrix view.

* vsip_index col_index: The index of the column to extract (0-based).

Return Value
* On success, returns a pointer to the newly created vector view representing the specified column.

® On error (e.g., if the column index is out of bounds), returns NULL.

Example

vsip_mview_f *matrix;
vsip_vview_f *col_vector;
vsip_length i, j;

// Create a 5x10 matriz
matrix = vsip_mcreate_f(5, 10, VSIP_ROW, VSIP_MEM_NONE);

// Fill the matriz with some wvalues
for (i = 0; i < B; i++) {
for (j = 0; j < 10; j++) {
vsip_mput_f (matrix, i, j, 1 * 10 + j + 1);
}
}

// Get a vector view of the 3rd row (indez 2)
col_vector = vsip_mcolview_f (matrix, 2);

if (col_vector == NULL) {
// Handle error
}

// Now col_vector represents the 3rd row of the matriz
// and has length equal to the number of rows (5)
Notes
¢ The column vector view shares the same underlying data block as the source matrix.
* Modifications to the column vector will affect the source matrix and vice versa.
* The column index must be within the valid range of the matrix (0 < col_index < number of columns).
¢ The created vector view has a length equal to the number of rows in the source matrix.
¢ The vector view maintains the same stride as the column stride of the source matrix.

¢ This operation is efficient as it doesn’t copy any data, only creates a new view.

Version 1.5, January 2026 - Release Version 61
Copyright © Adelsbach

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.10 vsip_dmdiagview_p - Create a Diagonal Vector View of a Matrix
vsip_vview_f* vsip_mdiagview_f (const vsip_mview_f* matrix, vsip_index diagonal);
vsip_cvview_f* vsip_cmdiagview_f(const vsip_cmview_f* matrix, vsip_index diagonal);
Description

This function creates a vector view that represents a diagonal of a matrix. The resulting vector view shares the same
underlying data block as the matrix but provides access to only the elements along the specified diagonal.
The diagonal is specified by an index where:

* Index 0 represents the main diagonal
* Positive indices represent super-diagonals (above the main diagonal)
¢ Negative indices represent sub-diagonals (below the main diagonal)

The length of the resulting vector depends on the diagonal index and the matrix dimensions. For a diagonal with
index d in an m x n matrix, the length of the vector is:

min(m —max(0,—d),n —max(0,d))

Parameters

* const vsip_dmview_p* matrix: Pointer to the source matrix view.
* vsip_index diagonal: The index of the diagonal to extract:

— 0: Main diagonal
— >0: Super-diagonal (above main diagonal)

— <0: Sub-diagonal (below main diagonal)

Return Value

* On success, returns a pointer to the newly created vector view representing the specified diagonal.

® On error (e.g., if the diagonal index is invalid for the matrix dimensions), returns NULL.

Example

vsip_mview_f *matrix;
vsip_vview_f *diag_vector;
vsip_length i, j;

// Create a 5z5 matriz
matrix = vsip_mcreate_f(5, 5, VSIP_ROW, VSIP_MEM_NONE);

// Fill the matriz with some walues
for (i = 0; i < 5; i++) {
for (j = 0; j < 5; j++) {
vsip_mput_f (matrix, i, j, 1 * 5 + j + 1);
}
}

// Get a vector view of the main diagonal (indexz 0)
diag_vector = vsip_mdiagview_f (matrix, 0);

if (diag_vector == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 62
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

Notes

The diagonal vector view shares the same underlying data block as the source matrix.

Modifications to the diagonal vector will affect the source matrix and vice versa.

The diagonal index must be valid for the matrix dimensions (i.e., the diagonal must exist in the matrix).
The length of the resulting vector depends on the diagonal index and matrix dimensions.

For the main diagonal (index 0) of an n x n matrix, the vector length is n.

For super-diagonals (index > 0), the vector length is n —index.

For sub-diagonals (index < 0), the vector length is n + index.

This operation is efficient as it doesn’t copy any data, only creates a new view.

Version 1.5, January 2026 - Release Version 63
Copyright © Adelsbach

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.11 vsip_mrealview_p - Create a Real Part Matrix View

vsip_mview_f* vsip_mrealview_f (const vsip_cmview_f* cmatrix);

Description

This function creates a real matrix view that represents the real parts of a complex matrix. The resulting matrix view
shares the same underlying data block as the complex matrix but provides access to only the real components of each

complex element.

For a complex matrix A with elements a;; = x;; +iy;;, the real view matrix B will have elements b;; = x;;.

Parameters

* const vsip_cmview_p* cmatrix: Pointer to the source complex matrix view.

Return Value

* On success, returns a pointer to the newly created real matrix view representing the real parts.

® On error, returns NULL.

Example

vsip_cmview_f *complex_matrix;
vsip_mview_f *real_matrix;
vsip_length i, j;

// Create a 3z3 complex matriz
complex_matrix = vsip_cmcreate_f(3, 3, VSIP_ROW, VSIP_MEM_NONE) ;

// Fill with complex values
for (i = 0; 1 < 3; i++) {
for (j = 0; j < 3; j++) {
vsip_cmput_f (complex_matrix, i, j,
VSIP_CMPLX_F(i*3+j+1, (i*3+j+1)*0.1f));

}

// Create a real view of the complex matriz
real_matrix = vsip_mrealview_f (complex_matrix);

if (real_matrix == NULL) {
// Handle error

}

Notes

* The real matrix view shares the same underlying data block as the source complex matrix.

* Modifications to the real matrix view will affect the real parts of the complex matrix and vice versa.

* The real matrix view has the same dimensions as the source complex matrix.

¢ This operation is efficient as it doesn’t copy any data, only creates a new view.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

64

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.12 vsip_mimagview_p - Create an Imaginary Part Matrix View

vsip_mview_f* vsip_mimagview_f (const vsip_cmview_f* cmatrix);

Description

This function creates a real matrix view that represents the imaginary parts of a complex matrix. The resulting matrix
view shares the same underlying data block as the complex matrix but provides access to only the imaginary components
of each complex element.

For a complex matrix A with elements a;; = x;; +iy;;, the imaginary view matrix B will have elements b;; = y;;.

Parameters

* const vsip_cmview_p* cmatrix: Pointer to the source complex matrix view.

Return Value

* On success, returns a pointer to the newly created real matrix view representing the imaginary parts.

® On error, returns NULL.

Example

vsip_cmview_f *complex_matrix;
vsip_mview_f *imag_matrix;
vsip_length i, j;

// Create a 3z3 complex matriz
complex_matrix = vsip_cmcreate_f(3, 3, VSIP_ROW, VSIP_MEM_NONE) ;

// Fill with complex values
for (i = 0; 1 < 3; i++) {
for (j = 0; j < 3; j++) {
vsip_cmput_f (complex_matrix, i, j,
VSIP_CMPLX_F(i*3+j+1, (i*3+j+1)*0.1f));

}

// Create an imaginary view of the complex matriz
imag_matrix = vsip_mimagview_f(complex_matrix);

if (imag_matrix == NULL) {
// Handle error

}
Notes
¢ The imaginary matrix view shares the same underlying data block as the source complex matrix.
* Modifications to the imaginary matrix view will affect the imaginary parts of the complex matrix and vice versa.
* The imaginary matrix view has the same dimensions as the source complex matrix.
¢ This operation is efficient as it doesn’t copy any data, only creates a new view.
Version 1.5, January 2026 - Release Version 65

Copyright © Adelsbach

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.13 vsip_dmgetattrib_p - Get Matrix Attributes

typedef struct {
vsip_length row_length; /# Number of rows */
vsip_length col_length; /# Number of columns */
vsip_offset offset; /* O0ffset into the block */
vsip_stride row_stride; /* Stride between rows */
vsip_stride col_stride; /# Stride between columns */
vsip_block_f* block; /% Pointer to the data block */

} vsip_mattr_f;

/* same for the other dataypes with the respective vsip_dblock_p */

void vsip_mgetattrib_f(const vsip_mview_f* v, vsip_mattr_f* attr);
void vsip_cmgetattrib_f(const vsip_cmview_f* v, vsip_cmattr_f* attr);

Description

This function retrieves all attributes of a matrix view and stores them in a vsip_dmattr_p structure. The attribute
structure contains complete information about the matrix view’s dimensions, memory layout, and binding to its data
block.

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view.

* vsip_dmattr_p* attr: Pointer to the attribute structure where the matrix attributes will be stored.

Example

vsip_mview_f *matrix;
vsip_mattr_f attr;

// Create a matriz
matrix = vsip_mcreate_f (100, 100, VSIP_ROW, VSIP_MEM_NONE);

// Get all matriz attributes
vsip_mgetattrib_f (matrix, &attr);

printf ("Matrix attributes:\n");

printf(" Dimensions: %lu x %lu\n", attr.row_length, attr.col_length);
printf (" Memory offset: %1ld\n", attr.offset);

printf(" Row stride: %ld\n", attr.row_stride);

printf(" Column stride: %1ld\n", attr.col_stride);

printf (" Block pointer: %p\n", (void*)attr.block);

// Create a submatriz view and examine its attributes
vsip_mview_f *submatrix = vsip_msubview_f(matrix, 10, 10, 50, 50);
vsip_mgetattrib_f (submatrix, &attr);

printf ("\nSubmatrix attributes:\n");
printf(" Dimensions: %lu x %lu\n", attr.row_length, attr.col_length);
printf (" Memory offset: %ld\n", attr.offset);

// Create a transposed view and exzamine its attributes
vsip_mview_f *transposed = vsip_mtransview_f (matrix) ;
vsip_mgetattrib_f (transposed, &attr);

printf ("\nTransposed matrix attributes:\n");

printf(" Dimensions: %lu x %lu\n", attr.row_length, attr.col_length);
printf(" Row stride: %ld\n", attr.row_stride);

printf (" Column stride: %1ld\n", attr.col_stride);

Version 1.5, January 2026 - Release Version 66
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

Notes

¢ The vsip_mattr_f structure contains all information needed to completely describe a matrix view.
¢ The block field points to the underlying data block that stores the matrix elements.

¢ For row-major matrices, col_stride is typically 1 and row_stride equals the number of columns.
¢ For column-major matrices, row_stride is typically 1 and col_stride equals the number of rows.

¢ For transposed views, the row and column strides are swapped compared to the original matrix.

The offset indicates how many elements from the start of the block the matrix begins at.

Version 1.5, January 2026 - Release Version 67
Copyright © Adelsbach

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.14 vsip_dmputattrib_p - Set Matrix Attributes

typedef struct {
vsip_length row_length; /* Number of rows */
vsip_length col_length; /* Number of columns */
vsip_offset offset; /* Offset into the block */
vsip_stride row_stride; /# Stride between rows */
vsip_stride col_stride; /* Stride between columns */
vsip_block_f* block; /% Pointer to the data block */

} vsip_mattr_f;

/* same for the other dataypes with the respective vsip_dblock_p */

vsip_mview_f* vsip_mputattrib_f(vsip_mview_f* v, const vsip_mattr_f* attr);
vsip_cmview_f* vsip_cmputattrib_f (vsip_cmview_f* v, const vsip_cmattr_f* attr);
Description

This function modifies the attributes of an existing matrix view according to the parameters specified in a vsip_dmattr_p
structure. It allows you to change the view’s dimensions, memory layout, and binding to its data block in a single oper-
ation.

Parameters

* vsip_dmview_p* v: Pointer to the matrix view to be modified.

* const vsip_dmattr_p* attr: Pointer to the attribute structure containing the new attributes.

Return Value

¢ On success, returns a pointer to the modified matrix view.

¢ On error, returns NULL.

Example

vsip_mview_f *matrix;
vsip_mattr_f attr;
vsip_block_f *new_block;

// Create a matriz
matrix = vsip_mcreate_f (100, 100, VSIP_ROW, VSIP_MEM_NONE);

// Get current attributes
vsip_mgetattrib_f (matrix, &attr);

printf ("Original dimensions: %lu x %lu\n", attr.row_length, attr.col_length);

// Modify the view to show only a submatriz

attr.row_length = 50; // Show only first 50 rows
attr.col_length = 50; // Show only first 50 columns
attr.offset = 0; // Start from beginning of block

// Keep the same strides and block

if (vsip_mputattrib_f (matrix, &attr) == NULL) {
// Handle error

}
Notes
¢ This function completely reconfigures the matrix view according to the provided attributes.
* The new configuration must be valid (e.g., the block must be large enough to contain the view with the specified
offset and strides).
Version 1.5, January 2026 - Release Version 68

Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

* The view’s dimensions can be changed, but must be compatible with the block size and strides.
* The offset must be valid for the specified block.

¢ Strides must be positive and compatible with the block size and view dimensions.

Version 1.5, January 2026 - Release Version 69
Copyright © Adelsbach

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.15 vsip_dmgetblock_p - Get the Data Block from a Matrix View
vsip_block_f* vsip_mgetblock_f(const vsip_mview_f *v);

vsip_cblock_f* vsip_cmgetblock_f(const vsip_cmview_f *v);

Description

This function returns a pointer to the data block associated with a matrix view. The data block contains the actual
storage for the matrix elements.

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view.

Return Value

¢ Returns a pointer to the vsip_dblock_p associated with the matrix view.

Notes
® Multiple matrix views can share the same data block.
* The block should not be destroyed directly if it’s still being used by any matrix views.
¢ This function is useful for:

- Creating additional views of the same data with different parameters
— Checking if two matrices share the same underlying storage

— Performing operations that require access to the raw data

Version 1.5, January 2026 - Release Version 70
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.16 vsip_dmgetcollength_p - Get Number of Columns in a Matrix View
vsip_length vsip_mgetcollength_f(const vsip_mview_f *v);

vsip_length vsip_cmgetcollength_f (const vsip_cmview_f *v);

Description

This function returns the number of columns in a matrix view. The number of columns represents the size of the matrix
in its second dimension (width) and determines how many elements are in each row of the matrix.

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view.

Return Value

* Returns the number of columns in the matrix view as a vsip_length value.

Version 1.5, January 2026 - Release Version 71
Copyright © Adelsbach

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.17 vsip_dmputcollength_p - Set Number of Columns in a Matrix View
vsip_mview_f* vsip_mputcollength_f(const vsip_mview_f *v, vsip_length len);

vsip_cmview_f* vsip_cmputcollength_f(const vsip_cmview_f *v, vsip_length len);

Description

This function modifies the number of columns in an existing matrix view. It allows you to change the width of the matrix
view while keeping all other attributes (row count, block, offset, and strides) the same.

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view to be modified.

¢ vsip_length len: The new number of columns for the matrix view.

Return Value

* Returns a pointer to the modified matrix view.

Notes

* The new column length must be compatible with the matrix’s block and strides:
— The product of (new column length - 1) and column stride must not exceed the block size minus the offset
* Changing the column length affects how many elements are accessible in each row of the matrix view.

¢ For row-major matrices, this operation is generally safe as long as the new length doesn’t exceed the block bound-
aries.

¢ For column-major matrices or matrices with non-unit column strides, be cautious as changing the column length
might make the view invalid if it extends beyond the block boundaries.

Version 1.5, January 2026 - Release Version 72
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.18 vsip_dmgetrowlength_p - Get Number of Rows in a Matrix View
vsip_length vsip_mgetrowlength_f(const vsip_mview_f *v);

vsip_length vsip_cmgetrowlength_f (const vsip_cmview_f *v);

Description

This function returns the number of rows in a matrix view. The number of rows represents the size of the matrix in its
first dimension (height) and determines how many elements are in each column of the matrix.

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view.

Return Value

* Returns the number of rows in the matrix view as a vsip_length value.

Version 1.5, January 2026 - Release Version 73
Copyright © Adelsbach

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.19 vsip_dmputrowlength_p - Set Number of Rows in a Matrix View
vsip_mview_f* vsip_mputrowlength_f(const vsip_mview_f *v, vsip_length len);

vsip_cmview_f* vsip_cmputrowlength_f(const vsip_cmview_f *v, vsip_length len);

Description

This function modifies the number of rows in an existing matrix view. It allows you to change the height of the matrix
view while keeping all other attributes (column count, block, offset, and strides) the same.

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view to be modified.

¢ vsip_length len: The new number of rows for the matrix view.

Return Value

* Returns a pointer to the modified matrix view.

Notes

* The new row length must be compatible with the matrix’s block and strides:
— The product of (new row length - 1) and row stride must not exceed the block size minus the offset
¢ Changing the row length affects how many elements are accessible in each column of the matrix view.

e For column-major matrices, this operation is generally safe as long as the new length doesn’t exceed the block
boundaries.

¢ For row-major matrices or matrices with non-unit row strides, be cautious as changing the row length might make
the view invalid if it extends beyond the block boundaries.

Version 1.5, January 2026 - Release Version 74
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.20 vsip_dmgetcolstride_p - Get Column Stride of a Matrix View

vsip_stride vsip_mgetcolstride_f(const vsip_mview_f *v);
vsip_stride vsip_cmgetcolstride_f (const vsip_cmview_f *v);

Description

This function returns the column stride of a matrix view, which represents the number of elements to skip in memory

when moving from one column to the next within a row.

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view.

Return Value

¢ Returns the column stride as a vsip_stride value.

Example

vsip_mview_f *matrix;
vsip_stride col_stride;

// Create a standard row-major matric

matrix = vsip_mcreate_f (100, 100, VSIP_ROW, VSIP_MEM_NONE);

col_stride = vsip_mgetcolstride_f (matrix);

printf ("Standard matrix column stride: %1d\n", col_stride); // Typically 1
Notes

¢ For row-major matrices, the column stride is typically 1 (contiguous elements along rows).

¢ For column-major matrices, the column stride equals the number of rows.

¢ For transposed views, the column stride of the transposed view equals the row stride of the original matrix.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

75

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.21 vsip_dmputcolstride_p - Set Column Stride of a Matrix View
vsip_mview_f* vsip_mputcolstride_f(const vsip_mview_f *v, vsip_stride stride);
vsip_cmview_f* vsip_cmputcolstride_f (const vsip_cmview_f *v, vsip_stride stride);
Description

This function modifies the column stride of an existing matrix view. The column stride determines how elements are
laid out in memory along the columns of the matrix (how many elements to skip when moving from one column to the
next within a row).

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view to be modified.

* vsip_stride stride: The new column stride value.

Return Value

* Returns a pointer to the modified matrix view.

Example

vsip_mview_f *matrix;
vsip_stride original_stride, new_stride;

// Create a matriz

matrix = vsip_mcreate_f (100, 100, VSIP_ROW, VSIP_MEM_NONE);
original_stride = vsip_mgetcolstride_f (matrix);

printf("Original column stride: %1ld\n", original_stride); // Typically 1

// Change to stride of 2 (every other element in rows)
if (vsip_mputcolstride_f (matrix, 2) == NULL) {
// Handle error

}
printf ("New column stride: %1d\n", vsip_mgetcolstride_f(matrix)); // Output: 2

Notes

* The new stride must be compatible with the matrix dimensions and block size:
— (column length - 1) * new stride + offset must be < block size

¢ Changing the column stride affects how elements are accessed when moving along rows.

Version 1.5, January 2026 - Release Version 76
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.22 vsip_dmgetrowstride_p - Get Row Stride of a Matrix View

vsip_stride vsip_mgetrowstride_f(const vsip_mview_f *v);
vsip_stride vsip_cmgetrowstride_f (const vsip_cmview_f *v);

Description

This function returns the row stride of a matrix view, which represents the number of elements to skip in memory when

moving from one row to the next within a column.

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view.

Return Value

¢ Returns the row stride as a vsip_stride value.

Example

vsip_mview_f *matrix;
vsip_stride row_stride;

// Create a standard row-major matric

matrix = vsip_mcreate_f (100, 100, VSIP_ROW, VSIP_MEM_NONE);

row_stride = vsip_mgetrowstride_f (matrix);

printf ("Standard matrix row stride: %1d\n", row_stride); // Typically 1
Notes

¢ For column-major matrices, the row stride is typically 1 (contiguous elements along columns).

* For row-major matrices, the row stride equals the number of columns.

¢ For transposed views, the row stride of the transposed view equals the column stride of the original matrix.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

77

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.23 vsip_dmputrowstride_p - Set Row Stride of a Matrix View

vsip_mview_f* vsip_mputrowstride_f (const vsip_mview_f *v, vsip_stride stride);
vsip_cmview_f* vsip_cmputrowstride_f (const vsip_cmview_f *v, vsip_stride stride);

Description

This function modifies the row stride of an existing matrix view. The row stride determines how elements are laid out
in memory along the rows of the matrix (how many elements to skip when moving from one row to the next within a

column).

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view to be modified.

* vsip_stride stride: The new row stride value.

Return Value

* Returns a pointer to the modified matrix view.

Example

vsip_mview_f *matrix;
vsip_stride original_stride, new_stride;

// Create a matriz

matrix = vsip_mcreate_f (100, 100, VSIP_ROW, VSIP_MEM_NONE);
original_stride = vsip_mgetrowstride_f (matrix);

printf ("Original row stride: %1d\n", original_stride); // Typically 1

// Change to stride of 2 (every other element in rows)
if (vsip_mputrowstride_f (matrix, 2) == NULL) {
// Handle error

}
printf ("New row stride: %1d\n", vsip_mgetcolstride_f(matrix)); // Output: 2

Notes

* The new stride must be compatible with the matrix dimensions and block size:

— (row length - 1) * new stride + offset must be < block size

* Changing the row stride affects how elements are accessed when moving along columns.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

78

CHAPTER 1. SUPPORT FUNCTIONS 1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.24 vsip_dmgetoffset_p - Get Matrix View Offset
vsip_offset vsip_mgetoffset_f(const vsip_mview_f *v);

vsip_offset vsip_cmgetoffset_f(const vsip_cmview_f *v);

Description

This function returns the offset of a matrix view within its associated data block. The offset represents the number of
elements from the start of the block to the first element (0,0) of the matrix view.

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view.

Return Value

¢ Returns the offset in elements from the start of the block to the first element of the matrix view.

Notes

* For matrices created with vsip_mcreate_f, the offset is typically 0.

* The offset, combined with the strides, completely defines where the matrix view is located within its block.

Version 1.5, January 2026 - Release Version 79
Copyright © Adelsbach

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.25 vsip_dmputoffset_p - Set Matrix View Offset

vsip_mview_f* vsip_mputoffset_f(const vsip_mview_f *v, vsip_offset off);
vsip_cmview_f* vsip_cmputoffset_f (const vsip_cmview_f *v, vsip_offset off);

Description

This function modifies the offset of an existing matrix view. The offset determines where the matrix view begins within
its associated data block, measured in elements from the start of the block.

Parameters

* const vsip_dmview_p* v: Pointer to the matrix view to be modified.

¢ vsip_offset off: The new offset in elements from the start of the block.

Return Value

* Returns a pointer to the modified matrix view.

Notes

¢ The new offset must be such that the entire view fits within the block boundaries.
¢ The condition for a valid offset is:

offset + row_length x row_stride + col_length x col_stride < block_size

Version 1.5, January 2026 - Release Version 80
Copyright © Adelsbach

CHAPTER 1. SUPPORT FUNCTIONS

1.4. MATRIX VIEW SUPPORT FUNCTIONS

1.4.26 vsip_dmdestroy_p - Destroy a Matrix View

vsip_block_f* vsip_mdestroy_f(vsip_mview_f *matrix);
vsip_cblock_f* vsip_cmdestroy_f(vsip_cmview_f *matrix);

Description

This function destroys a matrix view and returns its associated data block.

Parameters

* vsip_dmview_p* matrix: Pointer to the matrix view to be destroyed.

Example

vsip_mview_f *matrix;

// Create a matriz
matrix = vsip_mcreate_f (100, 100, VSIP_ROW, VSIP_MEM_NONE);

// Use the matriz...
// .

// Destroy the matriz when mo longer needed
vsip_mdestroy_f (matrix) ;

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

81

1.4. MATRIX VIEW SUPPORT FUNCTIONS CHAPTER 1. SUPPORT FUNCTIONS

1.4.27 vsip_dmalldestroy_p - Destroy Matrix View and its Data Block
void vsip_malldestroy_f (vsip_mview_f *matrix);
void vsip_cmalldestroy_f(vsip_cmview_f *matrix);

Description

This function destroys a matrix view and its associated data block. If the view is from a derived block such as a complex
block, the complex block must be destroyed in a separate manner to free up the memory.

Parameters

¢ vsip_dmview_p* matrix: Pointer to a matrix view object to be destroyed.

Version 1.5, January 2026 - Release Version 82
Copyright © Adelsbach

Chapter 2

Scalar Functions

83

2.1. REAL SCALAR FUNCTIONS CHAPTER 2. SCALAR FUNCTIONS

2.1 Real Scalar Functions

Version 1.5, January 2026 - Release Version 84
Copyright © Adelsbach

CHAPTER 2. SCALAR FUNCTIONS 2.2. COMPLEX SCALAR FUNCTIONS

2.2 Complex Scalar Functions

Version 1.5, January 2026 - Release Version 85
Copyright © Adelsbach

2.2. COMPLEX SCALAR FUNCTIONS CHAPTER 2. SCALAR FUNCTIONS

2.2.1 vsip_real_p - Complex Real part

vsip_scalar_f vsip_real_f(vsip_cscalar_f x);

Description

This function extracts the real part of the complex scalar x.

Parameters

* vsip_cscalar_f x: The complex scalar from which to extract the real part.

Return Value

¢ The real part of the complex scalar.

Example

vsip_cscalar_f complex_value = {1.0, 2.0};
vsip_scalar_f real_part;

real_part = vsip_real_f(complex_value);

Version 1.5, January 2026 - Release Version 86
Copyright © Adelsbach

CHAPTER 2. SCALAR FUNCTIONS 2.2. COMPLEX SCALAR FUNCTIONS

2.2.2 vsip_imag_p - Complex Imaginary part

vsip_scalar_f vsip_imag_f(vsip_cscalar_f x);

Description

This function extracts the imaginary part of the complex scalar x.

Parameters

* vsip_cscalar_f x: The complex scalar from which to extract the imaginary part.

Return Value

¢ The imaginary part of the complex scalar.

Example

vsip_cscalar_f complex_value = {1.0, 2.0};
vsip_scalar_f imag_part;

imag_part = vsip_imag_f (complex_value);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

87

2.2. COMPLEX SCALAR FUNCTIONS

CHAPTER 2. SCALAR FUNCTIONS

2.2.3 vsip_cmplx_p - Create complex number

vsip_cscalar_f vsip_cmplx_f(vsip_scalar_f r, vsip_scalar_f i);

Description

This function creates a complex scalar from the real part r and the imaginary part i.

Parameters

* vsip_scalar_f r: The real part of the complex scalar.

* vsip_scalar_f i: The imaginary part of the complex scalar.

Return Value

¢ The created complex scalar.

Example

vsip_scalar_f real_part
vsip_scalar_f imag_part

1.0;
2.0;

vsip_cscalar_f complex_value;

complex_value = vsip_cmplx_f(real_part, imag_part);

Version 1.5, January 2026 - Release Version

Copyright © Adelsbach

88

CHAPTER 2. SCALAR FUNCTIONS 2.2. COMPLEX SCALAR FUNCTIONS

2.2.4 vsip_CMPLX_p - Create a Complex Scalar and Store in a Pointer

void vsip_CMPLX_f (vsip_scalar_f a, vsip_scalar_f b, vsip_cscalar_f *r);

Description

This function creates a complex scalar from the real part a and the imaginary part b and stores the result in the complex
scalar pointed to by r.

Parameters

* vsip_scalar_f a: The real part of the complex scalar.
* vsip_scalar_f b: The imaginary part of the complex scalar.

* vsip_cscalar_f* r: Pointer to the complex scalar where the result will be stored.

Example

vsip_scalar_f real_part 1.0;
vsip_scalar_f imag_part = 2.0;
vsip_cscalar_f complex_value;

vsip_CMPLX_f (real_part, imag_part, &complex_value);

Version 1.5, January 2026 - Release Version 89
Copyright © Adelsbach

2.3. INDEX SCALAR FUNCTIONS CHAPTER 2. SCALAR FUNCTIONS

2.3 Index Scalar Functions

Version 1.5, January 2026 - Release Version 90
Copyright © Adelsbach

Chapter 3

Random Number Generation

91

3.1. RANDOM NUMBER FUNCTIONS CHAPTER 3. RANDOM NUMBER GENERATION

3.1 Random Number Functions

Version 1.5, January 2026 - Release Version 92
Copyright © Adelsbach

CHAPTER 3. RANDOM NUMBER GENERATION 3.1. RANDOM NUMBER FUNCTIONS

3.1.1 vsip_randcreate - Create a Random Number Generator State
vsip_randstate *vsip_randcreate(vsip_index seed, vsip_index numprocs,
vsip_index id, vsip_rng portable);

Description
This function creates and initializes a random number generator state. The function allows for parallel random number
generation by specifying the number of processes (numprocs) and the process ID (id). The portable parameter specifies
the type of random number generator to use.
Parameters

* vsip_index seed: The seed value for the random number generator.

* vsip_index numprocs: The number of parallel processes.

¢ vsip_index id: The ID of the current process (must be in the range [0, numprocs-1]).

* vsip_rng portable: The type of random number generator to use (e.g., VSIP_PRNG for portable random number

generation).

Return Value

* On success, a pointer to the newly created random number generator state is returned.

¢ On error, NULL is returned.

Example

vsip_randstate *rand_state;
vsip_index seed = 42;
vsip_index numprocs = 1;
vsip_index id = 0;

// Create a random number gemerator state
rand_state = vsip_randcreate(seed, numprocs, id, VSIP_PRNG);

if (rand_state == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 93
Copyright © Adelsbach

3.1. RANDOM NUMBER FUNCTIONS CHAPTER 3. RANDOM NUMBER GENERATION

3.1.2 vsip_randdestroy - Destroy a Random Number Generator State

int vsip_randdestroy(vsip_randstate *state);

Description

This function destroys the random number generator state state and frees all associated resources. After calling this
function, the random number generator state should no longer be used.

Parameters

* vsip_randstate* state: Pointer to the random number generator state to be destroyed.

Return Value

¢ Returns O on success.

e Returns a non-zero value on error.

Example

vsip_randstate *rand_state;
int result;

// Assuming rand_state has been properly initialized
result = vsip_randdestroy(rand_state);

if (result '= 0) {
// Handle error
}

Version 1.5, January 2026 - Release Version 94
Copyright © Adelsbach

CHAPTER 3. RANDOM NUMBER GENERATION 3.1. RANDOM NUMBER FUNCTIONS

3.1.3 vsip_dvrandu_p - Generate Uniformly Distributed Random Numbers in a Vector
View

void vsip_vrandu_f(vsip_randstate *state, const vsip_vview_f *r);
void vsip_cvrandu_f (vsip_randstate *state, const vsip_cvview_f *r);

Description

This function fills the vector view r with uniformly distributed random numbers in the range [0, 1) using the random
number generator state state.

Parameters

* vsip_randstate* state: Pointer to the random number generator state.

* const vsip_dvview_p* r: Pointer to the destination vector view where the random numbers will be stored.

Example

vsip_randstate *rand_state;
vsip_vview_f *random_vector;

// Initialize random number generator state
rand_state = vsip_randcreate(42, 0, 1, VSIP_PRNG);

// Assuming random_vector has been properly initialized
vsip_vrandu_f (rand_state, random_vector);

// Clean up
vsip_randdestroy(rand_state);

Version 1.5, January 2026 - Release Version 95
Copyright © Adelsbach

3.1. RANDOM NUMBER FUNCTIONS CHAPTER 3. RANDOM NUMBER GENERATION

3.14 vsip_dvrandn_p - Fill Vector with Normally Distributed Random Numbers
void vsip_vrandn_f(vsip_randstate *state, const vsip_vview_f *r);

void vsip_cvrandn_f(vsip_randstate *state, const vsip_cvview_f *r);

Description

This function fills a vector with random numbers drawn from a standard normal distribution (mean = 0, standard
deviation = 1) using the specified random number generator state. The random numbers are generated according to the
normal (Gaussian) probability density function:

o

1 e
= 7?
)= "Ja=e

Parameters
* vsip_randstate* state: Pointer to the random number generator state.
* const vsip_dvview_p* r: Pointer to the output vector that will be filled with normally distributed random
numbers.
Example

vsip_randstate *rand_state;
vsip_vview_f *random_vector;

// Initialize random number generator state
rand_state = vsip_randcreate(42, 0, 1, VSIP_PRNG);

// Assuming random_vector has been properly initialized
vsip_vrandn_f (rand_state, random_vector);

// Clean up
vsip_randdestroy(rand_state);

Version 1.5, January 2026 - Release Version 96
Copyright © Adelsbach

Chapter 4

Vector and Elementwise Operations

97

4.1. COPY FUNCTIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.1 Copy Functions

Version 1.5, January 2026 - Release Version 98
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.1. COPY FUNCTIONS

4.1.1 vsip_dvcopy_p_p - Copy Vector Views

void vsip_vcopy_f_f(const vsip_vview_f* a, const vsip_vview_f* r);
void vsip_vcopy_i_i(const vsip_vview_i* a, const vsip_vview_i* r);
void vsip_vcopy_i_f(const vsip_vview_i* a, const vsip_vview_f* r);
void vsip_vcopy_f_i(const vsip_vview_f* a, const vsip_vview_i* r);
void vsip_cvcopy_f_f(const vsip_cvview_f* a, const vsip_cvview_f* r);
void vsip_vcopy_vi_vi(const vsip_vview_vi* a, const vsip_vview_vi* r);
void vsip_vcopy_i_vi(const vsip_vview_i* a, const vsip_vview_vi* r);
void vsip_vcopy_vi_i(const vsip_vview_vi* a, const vsip_vview_i* r);
void vsip_vcopy_mi_mi(const vsip_vview_mi* a, const vsip_vview_mi* r);
void vsip_vcopy_bl_bl(const vsip_vview_bl* a, const vsip_vview_bl* r);
void vsip_vcopy_bl_f(const vsip_vview_bl* a, const vsip_vview_f* r);
void vsip_vcopy_f_bl(const vsip_vview_f* a, const vsip_vview_bl* r);

Description

These functions copy the contents of one vector view to another. The source and destination vector views can be of
different types (float or integer), and the functions handle the necessary type conversions.

Parameters

* const vsip_dvview_p* a: Pointer to the source vector view.

* const vsip_dvview_p* r: Pointer to the destination vector view.

Functions
¢ vsip_vcopy_f_f: Copies from a float vector view to another float vector view.
¢ vsip_vcopy_i_i: Copies from an integer vector view to another integer vector view.
¢ vsip_vcopy_i_f: Copies from an integer vector view to a float vector view.
¢ vsip_vcopy_f_i: Copies from a float vector view to an integer vector view.
¢ vsip_cvcopy_f_f: Copies from a complex float vector view to another complex float vector view.
* vsip_vcopy_vi_vi: Copies from a vector index vector view to another vector index vector view.
* vsip_vcopy_vi_i: Copies from a vector index vector view to integer vector view.
* vsip_vcopy_i_vi: Copies from a integer vector view to a vector index vector view.
* vsip_vcopy_mi_mi: Copies from a matrix index vector view to another matrix index vector view.
* vsip_vcopy_bl_bl: Copies from a boolean vector view to another boolean vector view.
* vsip_vcopy_bl_f: Copies from a boolean vector view to a real vector view.

* vsip_vcopy_f_bl: Copies from a real vector view to a boolean vector view.

Example

vsip_vview_f *src_float_view;
vsip_vview_f *dst_float_view;

// Assuming all views have been properly initialized

// Copy from float vector view to float vector view
vsip_vcopy_f_f(src_float_view, dst_float_view);

Version 1.5, January 2026 - Release Version 99
Copyright © Adelsbach

4.1. COPY FUNCTIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.1.2 vsip_dmcopy_p - Copy Matrix Views

void vsip_mcopy_f_f(const vsip_mview_f* A, const vsip_mview_f* B);
void vsip_cmcopy_f_f (const vsip_cmview_f* A, const vsip_cmview_f* B);

Description

These functions copy the contents of one matrix view to another, with optional type conversion. The functions handle
both real and complex matrices of various precision levels:

¢ vsip_mcopy_£f_f: Copy from float matrix to float matrix

¢ vsip_cmcopy_f_£f: Copy from complex float matrix to complex float matrix

Parameters

* const vsip_dmview_p* A:Pointer to the source matrix view

* const vsip_dmview_p* B: Pointer to the destination matrix view

Example

vsip_mview_f *src_matrix_f;
vsip_mview_f *dst_matrix_f;

// Copy float matriz to float matriz
vsip_mcopy_f_f(src_matrix_f, dst_matrix_f);

Notes

* The source and destination matrices must have the same dimensions.
¢ For type conversion functions, appropriate rounding or truncation is applied when converting to integer types.

* When converting from higher precision to lower precision (e.g., double to float), values may be truncated or
rounded.

* The matrices can be views of larger matrices or blocks, allowing for copying of submatrices.

Version 1.5, January 2026 - Release Version 100
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.2. VECTOR GENERAL

4.2 Vector General

Version 1.5, January 2026 - Release Version 101
Copyright © Adelsbach

4.2. VECTOR GENERAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.2.1 vsip_dvmul_p - Element-wise Multiplication of Two Vector Views
void vsip_vmul_f (const vsip_vview_f* a, const vsip_vview_f* b, const vsip_vview_f* r);
void vsip_cvmul_f (const vsip_cvview_f* a, const vsip_cvview_f* b, const vsip_cvview_f* r);
Description
This function performs element-wise multiplication of the vector views a and b and stores the result in the vector view
T.
Parameters
* const vsip_dvview_p* a: Pointer to the first source vector view.
* const vsip_dvview_p* b: Pointer to the second source vector view.

* const vsip_dvview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;
vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized
vsip_vmul_f (vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version 102
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.2. VECTOR GENERAL

4.2.2 vsip_vdiv_p - Element-wise Division of Two Vector Views

void vsip_vdiv_f(const vsip_vview_f* a, const vsip_vview_f* b, const vsip_vview_f* r);

Description
This function performs element-wise division of the vector view a by the vector view b and stores the result in the vector
view r.
Parameters
* const vsip_vview_p* a: Pointer to the numerator vector view.
* const vsip_vview_p* b: Pointer to the denominator vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;
vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized
vsip_vdiv_f (vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version 103
Copyright © Adelsbach

4.2. VECTOR GENERAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.2.3 vsip_dvadd_p - Element-wise Addition of Two Vector Views

void vsip_vadd_f(const vsip_vview_f* a, const vsip_vview_f* b, const vsip_vview_f* r);
void vsip_cvadd_f (const vsip_cvview_f* a, const vsip_cvview_f* b, const vsip_cvview_f* r);
Description

This function performs element-wise addition of the vector views a and b and stores the result in the vector view r.

Parameters
* const vsip_dvview_p* a: Pointer to the first source vector view.
* const vsip_dvview_p* b: Pointer to the second source vector view.

* const vsip_dvview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;
vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized
vsip_vadd_f (vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version 104
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.2. VECTOR GENERAL

4.2.4 vsip_dvsub_p - Element-wise Subtraction of Two Vector Views
void vsip_vsub_f (const vsip_vview_f* a, const vsip_vview_f* b, constvsip_vview_f* r);
void vsip_cvsub_f (const vsip_cvview_f* a, const vsip_cvview_f* b, const vsip_cvview_f* r);
Description
This function performs element-wise subtraction of the vector view b from the vector view a and stores the result in the
vector view r.
Parameters
* const vsip_dvview_p* a: Pointer to the minuend vector view.
* const vsip_dvview_p* b: Pointer to the subtrahend vector view.

* const vsip_dvview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;
vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized
vsip_vsub_f (vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version 105
Copyright © Adelsbach

4.2. VECTOR GENERAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.2.5 vsip_dsvmul_p - Multiply a Scalar by a Vector View

void vsip_svmul_f (vsip_scalar_f alpha, const vsip_vview_f* b, const vsip_vview_f* r);
void vsip_csvmul_f(vsip_cscalar_f alpha, const vsip_cvview_f* b, const vsip_cvview_f* r);
Description

This function multiplies each element of the vector view b by the scalar alpha and stores the result in the vector view r.

Parameters
* vsip_dscalar_p alpha: The scalar value to multiply by.
* const vsip_dvview_p* b: Pointer to the source vector view.

* const vsip_dvview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;
vsip_scalar_f scalar = 2.0;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_svmul_f(scalar, src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version 106
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.2. VECTOR GENERAL

4.2.6 vsip_svdiv_p - Divide a Scalar by a Vector View

void vsip_svdiv_f (vsip_scalar_f alpha, const vsip_vview_f* b, const vsip_vview_f* r);

Description

This function divides the scalar alpha by each element of the vector view b and stores the result in the vector view r.

Parameters
* vsip_scalar_p alpha: The scalar value to divide.
* const vsip_vview_p* b: Pointer to the source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;
vsip_scalar_f scalar = 2.0;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_svdiv_f(scalar, src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

107

4.2. VECTOR GENERAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.2.7 vsip_svadd_p - Add a Scalar to a Vector View

void vsip_svadd_f (vsip_scalar_f alpha, const vsip_vview_f* b, const vsip_vview_f* r);

Description

This function adds the scalar alpha to each element of the vector view b and stores the result in the vector view r.

Parameters
* vsip_scalar_p alpha: The scalar value to add.
* const vsip_vview_p* b: Pointer to the source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;
vsip_scalar_f scalar = 2.0;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_svadd_f(scalar, src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

108

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.2. VECTOR GENERAL

4.2.8 vsip_dvneg_p - Negate Elements of a Vector View

void vsip_vneg_f(const vsip_vview_f* a, const vsip_vview_f* r);
void vsip_cvneg_f (const vsip_cvview_f* a, const vsip_cvview_f* r);

Description

This function negates each element of the vector view a and stores the result in the vector view r.
r;=—a;
Parameters

* const vsip_dvview_p* a: Pointer to the source vector view.

* const vsip_dvview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_vneg_f (src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version 109
Copyright © Adelsbach

4.2. VECTOR GENERAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.2.9 vsip_dvmag_p - Compute Magnitude of Elements of a Vector View
void vsip_vmag_f(const vsip_vview_f* a, const vsip_vview_f* r);

void vsip_cvmag_f (const vsip_cvview_f* a, const vsip_vview_f* r);

Description

This function computes the magnitude (absolute value) of each element of the vector view a and stores the result in the
vector view r.

ri=la;l
Parameters

* const vsip_dvview_p* a: Pointer to the source vector view.

* const vsip_dvview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_vmag_f (src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version 110
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3 Vector Real

Version 1.5, January 2026 - Release Version 111
Copyright © Adelsbach

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.1 vsip_vminval_p - Find the Minimum Value in a Vector View

vsip_scalar_f vsip_vminval_f(const vsip_vview_f* a, vsip_index* j);

Description

This function finds the minimum value in the vector view a and returns it. The index of the minimum value is stored in
the variable pointed to by j.

Parameters

* const vsip_vview_p* a: Pointer to the vector view.

* vsip_index* j: Pointer to a variable where the index of the minimum value will be stored.

Return Value

¢ The minimum value in the vector view.

Example

vsip_vview_f *vector_view;
vsip_index index;
vsip_scalar_f min_value;

// Assuming vector_view has been properly initialized
min_value = vsip_vminval_f(vector_view, &index);

Version 1.5, January 2026 - Release Version 112
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.2 vsip_vmaxval_p - Find the Maximum Value in a Vector View

vsip_scalar_f vsip_vmaxval_f(const vsip_vview_f* a, vsip_index* j);

Description

This function finds the maximum value in the vector view a and returns it. The index of the maximum value is stored
in the variable pointed to by j.

Parameters

* const vsip_vview_p* a: Pointer to the vector view.

* vsip_index* j: Pointer to a variable where the index of the maximum value will be stored.

Return Value

¢ The maximum value in the vector view.

Example

vsip_vview_f *vector_view;
vsip_index index;
vsip_scalar_f max_value;

// Assuming vector_view has been properly initialized
max_value = vsip_vmaxval_f (vector_view, &index);

Version 1.5, January 2026 - Release Version 113
Copyright © Adelsbach

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.3 vsip_vsumval_p - Compute the Sum of Elements in a Vector View

vsip_scalar_f vsip_vsumval_f(const vsip_vview_f* a);

Description

This function computes the sum of all elements in the vector view a and returns it.

>

i
Parameters

* const vsip_vview_p* a: Pointer to the vector view.

Return Value

¢ The sum of all elements in the vector view.

Example

vsip_vview_f *vector_view;
vsip_scalar_f sum;

// Assuming vector_view has been properly initialized
sum = vsip_vsumval_f (vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

114

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.4 vsip_vsumsqval_p - Compute the Sum of Squares of Elements in a Vector View

vsip_scalar_f vsip_vsumsqval_f (const vsip_vview_f* a);

Description

This function computes the sum of the squares of all elements in the vector view a and returns it.

- 92
Z a;
i
Parameters

* const vsip_vview_p* a: Pointer to the vector view.

Return Value

* The sum of the squares of all elements in the vector view.

Example

vsip_vview_f *vector_view;
vsip_scalar_f sum_of_squares;

// Assuming vector_view has been properly initialized
sum_of_squares = vsip_vsumsqval_f(vector_view);

Version 1.5, January 2026 - Release Version 115
Copyright © Adelsbach

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.5 vsip_vsq_p - Square Elements of a Vector View

void vsip_vsq_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function squares each element of the vector view a and stores the result in the vector view r.

r;= a?
Parameters

* const vsip_vview_p* a: Pointer to the source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_vsq_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

116

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.6 vsip_vrecip_p - Compute Reciprocal of Elements of a Vector View

void vsip_vrecip_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the reciprocal of each element of the vector view a and stores the result in the vector view r.

ri=—
a;

Parameters
* const vsip_vview_p* a: Pointer to the source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example
vsip_vview_f *src_vector_view;

vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_vrecip_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version 117
Copyright © Adelsbach

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.7 vsip_vmin_p - Element-wise Minimum of Two Vector Views

void vsip_vmin_f(const vsip_vview_f* a, const vsip_vview_f* b, const vsip_vview_f* w);

Description

This function performs element-wise minimum comparison of the vector views a and b and stores the result in the vector
view w. Each element in w is the minimum of the corresponding elements in a and b.

w; = min(a;,b;)

Parameters
* const vsip_vview_p* a: Pointer to the first source vector view.
* const vsip_vview_p* b: Pointer to the second source vector view.

* const vsip_vview_p* w: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;
vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized
vsip_vmin_f (vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version 118
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.8 vsip_vmax_p - Element-wise Maximum of Two Vector Views

void vsip_vmax_f (const vsip_vview_f* a, const vsip_vview_f* b, const vsip_vview_f* w);

Description

This function performs element-wise maximum comparison of the vector views a and b and stores the result in the vector
view w. Each element in w is the maximum of the corresponding elements in a and b.

w; = max(aj,b;)

Parameters
* const vsip_vview_p* a: Pointer to the first source vector view.
* const vsip_vview_p* b: Pointer to the second source vector view.

* const vsip_vview_p* w: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;
vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized
vsip_vmax_f (vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version 119
Copyright © Adelsbach

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.9 vsip_vsin_p - Element-wise Sine of a Vector View

void vsip_vsin_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise sine of the vector view a and stores the result in the vector view r.

r; =sin(a;)

Parameters

* const vsip_vview_p* a: Pointer to the source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_vsin_f (src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

120

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.10 vsip_vcos_p - Element-wise Cosine of a Vector View

void vsip_vcos_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise cosine of the vector view a and stores the result in the vector view r.
r; =cos(a;)
Parameters

* const vsip_vview_p* a: Pointer to the source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_vcos_f (src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version 121
Copyright © Adelsbach

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.11 vsip_vtan_p - Element-wise Tangent of a Vector View

void vsip_vtan_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise tangent of the vector view a and stores the result in the vector view r.
r; =tan(a;)
Parameters

* const vsip_vview_p* a: Pointer to the source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_vtan_f (src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version 122
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.12 vsip_vatan_p - Element-wise Arctangent of a Vector View

void vsip_vatan_f (const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise arctangent (inverse tangent) of the vector view a and stores the result in the
vector view r.

ri= tanfl(ai)
Parameters

* const vsip_vview_p* a: Pointer to the source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_vatan_f (src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version 123
Copyright © Adelsbach

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.13 vsip_vexp_p - Element-wise Exponential of a Vector View

void vsip_vexp_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise exponential of the vector view a and stores the result in the vector view r.
r;=e%
Parameters

* const vsip_vview_p* a: Pointer to the source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_vexp_f (src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version 124
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.14 vsip_vlog_p - Element-wise Natural Logarithm of a Vector View

void vsip_vlog_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise natural logarithm of the vector view a and stores the result in the vector view
T.

ri =log(a;)
Parameters

* const vsip_vview_p* a: Pointer to the source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_vlog_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version 125
Copyright © Adelsbach

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.15 vsip_vloglO_p - Element-wise Base-10 Logarithm of a Vector View

void vsip_vloglO_f(const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise base-10 logarithm of the vector view a and stores the result in the vector view
T.

ri =logyola;)
Parameters

* const vsip_vview_p* a: Pointer to the source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_vloglO_f(src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version 126
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.3. VECTOR REAL

4.3.16 vsip_vsqrt_p - Element-wise Square Root of a Vector View

void vsip_vsqrt_f (const vsip_vview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise square root of the vector view a and stores the result in the vector view r.
ri=va;

Parameters

* const vsip_vview_p* a: Pointer to the source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *src_vector_view;
vsip_vview_f *dst_vector_view;

// Assuming src_vector_view and dst_vector_view have been properly initialized
vsip_vsqrt_f (src_vector_view, dst_vector_view);

Version 1.5, January 2026 - Release Version 127
Copyright © Adelsbach

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.17 vsip_vatan2_p - Element-wise Arctangent of Two Vector Views

void vsip_vatan2_f(const vsip_vview_f* a, const vsip_vview_f* b, const vsip_vview_f* r);

Description
This function computes the element-wise arctangent of the quotient of the corresponding elements in the vector views a
and b and stores the result in the vector view r.
ri =tan"1(a/b)
Parameters
* const vsip_vview_p* a: Pointer to the first source vector view.

* const vsip_vview_p* b: Pointer to the second source vector view.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view_a;
vsip_vview_f *vector_view_b;
vsip_vview_f *result_vector_view;

// Assuming vector_view_a, vector_view_b, and result_vector_view have been properly initialized
vsip_vatan2_f(vector_view_a, vector_view_b, result_vector_view);

Version 1.5, January 2026 - Release Version 128
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3. VECTOR REAL

4.3.18 vsip_vfill_p - Fill a Vector View with a Scalar Value

void vsip_vfill_f (vsip_scalar_f alpha, const vsip_vview_f* r);

Description

This function fills the vector view r with the scalar value alpha.
r=a
Parameters

* vsip_scalar_p alpha: The scalar value to fill the vector view with.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view;
vsip_scalar_f scalar_value = 2.0;

// Assuming vector_view has been properly initialized
vsip_vfill_f(scalar_value, vector_view);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

129

4.3. VECTOR REAL CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.3.19 vsip_vramp_p - Fill a Vector View with a Ramp

void vsip_vramp_f (vsip_scalar_f z, vsip_scalar_f d, const vsip_vview_f* r);

Description

This function fills the vector view r with a ramp starting at z and incrementing by d.

ri=z+di

Parameters
* vsip_scalar_p z: The starting value of the ramp.
* vsip_scalar_p d: The increment value of the ramp.

* const vsip_vview_p* r: Pointer to the destination vector view.

Example

vsip_vview_f *vector_view;
vsip_scalar_f start_value = 0.0;

vsip_scalar_f increment = 1.0;

// Assuming vector_view has been properly initialized
vsip_vramp_f (start_value, increment, vector_view);

Version 1.5, January 2026 - Release Version 130
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.4. VECTOR COMPLEX

4.4 Vector Complex

Version 1.5, January 2026 - Release Version 131
Copyright © Adelsbach

4.4. VECTOR COMPLEX CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.4.1 vsip_cvjmul_p - Element-wise Complex Conjugate Multiplication of Two Complex
Vector Views

void vsip_cvjmul_f(const vsip_cvview_f* a, const vsip_cvview_f* b, const vsip_cvview_f* w);

Description
This function performs element-wise complex conjugate multiplication of the complex vector views a and b and stores
the result in the complex vector view w.
Parameters
* const vsip_cvview_p* a: Pointer to the first source complex vector view.
* const vsip_cvview_p* b: Pointer to the second source complex vector view.

* const vsip_cvview_p* w: Pointer to the destination complex vector view.

Example

vsip_cvview_f *complex_vector_a;
vsip_cvview_f *complex_vector_b;
vsip_cvview_f *result_vector;

// Assuming complex_vector_a, complez_vector_b, and result_vector have been properly initialized
vsip_cvjmul_f (complex_vector_a, complex_vector_b, result_vector);

Version 1.5, January 2026 - Release Version 132
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.4. VECTOR COMPLEX

4.4.2 vsip_rcvmul_p - Element-wise Real-Complex Multiplication

void vsip_rcvmul_f(const vsip_vview_f* a, const vsip_cvview_f* b, const vsip_cvview_f* r);

Description
This function performs element-wise multiplication of the real vector view a and the complex vector view b and stores
the result in the complex vector view r.
Parameters
* const vsip_vview_p* a: Pointer to the source real vector view.
* const vsip_cvview_p* b: Pointer to the source complex vector view.

* const vsip_cvview_p* r: Pointer to the destination complex vector view.

Example

vsip_vview_f *real_vector;
vsip_cvview_f *complex_vector;
vsip_cvview_f *result_vector;

// Assuming real_vector, compler_vector, and result_vector have been properly initialized
vsip_rcvmul_f (real_vector, complex_vector, result_vector);

Version 1.5, January 2026 - Release Version 133
Copyright © Adelsbach

4.4. VECTOR COMPLEX CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.4.3 vsip_rscvmul_p - Element-wise Scalar-Complex Multiplication

void vsip_rscvmul_f(vsip_scalar_f alpha, const vsip_cvview_f* b, const vsip_cvview_f* r);

Description
This function performs element-wise multiplication of the scalar alpha and the complex vector view b and stores the
result in the complex vector view r.
Parameters
* vsip_scalar_p alpha: The scalar value to multiply by.
* const vsip_cvview_p* b: Pointer to the source complex vector view.

* const vsip_cvview_p* r: Pointer to the destination complex vector view.

Example

vsip_scalar_f scalar = 2.0;
vsip_cvview_f *complex_vector;
vsip_cvview_f *result_vector;

// Assuming complex_vector and result_vector have been properly initialized
vsip_rscvmul_f (scalar, complex_vector, result_vector);

Version 1.5, January 2026 - Release Version 134
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.4. VECTOR COMPLEX

4.4.4 vsip_cvconj_p - Element-wise Complex Conjugate of a Complex Vector View

void vsip_cvconj_f(const vsip_cvview_f* a, const vsip_cvview_f* r);

Description

This function computes the element-wise complex conjugate of the complex vector view a and stores the result in the
complex vector view r.

Parameters

* const vsip_cvview_p* a: Pointer to the source complex vector view.

* const vsip_cvview_p* r: Pointer to the destination complex vector view.

Example

vsip_cvview_f *complex_vector;
vsip_cvview_f *result_vector;

// Assuming complex_vector and result_vector have been properly initialized
vsip_cvconj_f (complex_vector, result_vector);

Version 1.5, January 2026 - Release Version 135
Copyright © Adelsbach

4.4. VECTOR COMPLEX CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.4.5 vsip_cvmag_p - Compute Magnitude of Complex Vector View

void vsip_cvmag_f (const vsip_cvview_f *a, const vsip_vview_f *r);

Description

This function computes the element-wise magnitude (absolute value) of each complex element in the vector view a and
stores the result in the real vector view r. The magnitude of a complex number a + bi is calculated as Va2 + b2.
Parameters

* const vsip_cvview_p* a: Pointer to the source complex vector view.

* const vsip_vview_p* r: Pointer to the destination real vector view where the magnitudes will be stored.

Example
vsip_cvview_f *complex_vector_view;

vsip_vview_f *magnitude_vector_view;

// Assuming complex_vector_view and magnitude_vector_view have been properly initialized
vsip_cvmag_f (complex_vector_view, magnitude_vector_view) ;

Version 1.5, January 2026 - Release Version 136
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.4. VECTOR COMPLEX

4.4.6 vsip_vcmagsq_p - Element-wise Magnitude Squared of a Complex Vector View

void vsip_vcmagsq_f (const vsip_cvview_f* a, const vsip_vview_f* r);

Description

This function computes the element-wise magnitude squared of the complex vector view a and stores the result in the
real vector view r.

Parameters

* const vsip_cvview_p* a: Pointer to the source complex vector view.

* const vsip_vview_p* r: Pointer to the destination real vector view.

Example

vsip_cvview_f *complex_vector;
vsip_vview_f *real_vector;

// Assuming complex_vector and rTeal_vector have been properly initialized
vsip_vcmagsq_f (complex_vector, real_vector);

Version 1.5, January 2026 - Release Version 137
Copyright © Adelsbach

4.5. BOOLEAN CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.5 Boolean

Version 1.5, January 2026 - Release Version 138
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.5. BOOLEAN

4.5.1 vsip_vnot_p - Boolean Vector Logical NOT

void vsip_vnot_bl(const vsip_vview_bl *a, const vsip_vview_bl *b, const vsip_vview_bl *r);

Description

This function performs a logical NOT operation between corresponding elements of two boolean vectors a and b, storing
the result in the output vector r. The operation performs element-wise logical NOT:

ri=a;"b;

for all i from 0 to n — 1, where n is the length of the vectors.

Parameters

* const vsip_vview_p* a: First input boolean vector.
* const vsip_vview_p* b: Second input boolean vector.

* const vsip_vview_p* r: Output boolean vector that will store the result.

Example

vsip_vview_bl *a, *b, *r;
vsip_length n = 10;

// Create boolean wvectors

a = vsip_vcreate_bl(n, VSIP_MEM_NONE);
b = vsip_vcreate_bl(n, VSIP_MEM_NONE);
r = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Initialize vectors with some boolean values
// For ezample, set alternating true/false patterns
for (vsip_length i = 0; i < nj; i++) {
vsip_vput_bl(a, i, (i % 2) == 0); // true for even indices
vsip_vput_bl(b, i, (i % 3) == 0); // true for indices divisible by 3
}

// Perform logical AND operation
vsip_vnot_bl(a, b, r);

// The result wvector r will now contain true only where both
// a and b had true values (indices 0, 6)

// Clean up

vsip_valldestroy_bl(a);
vsip_valldestroy_bl(b);
vsip_valldestroy_bl(r);

Version 1.5, January 2026 - Release Version 139
Copyright © Adelsbach

4.5. BOOLEAN CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.5.2 vsip_vand_p - Boolean Vector Logical AND

void vsip_vand_bl(const vsip_vview_bl *a, const vsip_vview_bl *b, const vsip_vview_bl *r);

Description

This function performs a logical AND operation between corresponding elements of two boolean vectors a and b, storing
the result in the output vector r. The operation performs element-wise logical AND:

ri=a;A\Nb;

for all i from 0 to n — 1, where n is the length of the vectors.

Parameters

* const vsip_vview_p* a: First input boolean vector.
* const vsip_vview_p* b: Second input boolean vector.

* const vsip_vview_p* r: OQutput boolean vector that will store the result.

Example

vsip_vview_bl *a, *b, *r;
vsip_length n = 10;

// Create boolean wvectors

a = vsip_vcreate_bl(n, VSIP_MEM_NONE);
b = vsip_vcreate_bl(n, VSIP_MEM_NONE);
r = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Initialize vectors with some boolean values
// For exzample, set alternating true/false patterns
for (vsip_length i = 0; i < nj; i++) {
vsip_vput_bl(a, i, (i % 2) == 0); // true for even indices
vsip_vput_bl(b, i, (i % 3) == 0); // true for indices divisible by 3
}

// Perform logical AND operation
vsip_vand_bl(a, b, r);

// The result wvector r will now contain true only where both
// a and b had true values (indices 0, 6)

// Clean up

vsip_valldestroy_bl(a);
vsip_valldestroy_bl(b);
vsip_valldestroy_bl(r);

Version 1.5, January 2026 - Release Version 140
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.5. BOOLEAN

4.5.3 vsip_vor_p - Boolean Vector Logical OR

void vsip_vor_bl(const vsip_vview_bl *a, const vsip_vview_bl *b, const vsip_vview_bl *r);

Description

This function performs a logical OR operation between corresponding elements of two boolean vectors a and b, storing
the result in the output vector r. The operation performs element-wise logical OR:

ri=a;Vvb;

for all i from O to n — 1, where n is the length of the vectors.

Parameters

* const vsip_vview_p* a: First input boolean vector.
* const vsip_vview_p* b: Second input boolean vector.

* const vsip_vview_p* r: Output boolean vector that will store the result.

Example

vsip_vview_bl *a, *b, *r;
vsip_length n = 10;

// Create boolean wvectors

a = vsip_vcreate_bl(n, VSIP_MEM_NONE);
b = vsip_vcreate_bl(n, VSIP_MEM_NONE);
r = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Initialize vectors with some boolean values
// For exzample, set alternating true/false patterns
for (vsip_length i = 0; i < nj; i++) {
vsip_vput_bl(a, i, (i % 2) == 0); // true for even indices
vsip_vput_bl(b, i, (i % 3) == 0); // true for indices divisible by 3
}

// Perform logical AND operation
vsip_vor_bl(a, b, r);

// The result wvector r will now contain true only where both
// a and b had true values (indices 0, 6)

// Clean up

vsip_valldestroy_bl(a);
vsip_valldestroy_bl(b);
vsip_valldestroy_bl(r);

Version 1.5, January 2026 - Release Version 141
Copyright © Adelsbach

4.5. BOOLEAN CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.5.4 vsip_vxor_p - Boolean Vector Logical XOR

void vsip_vxor_bl(const vsip_vview_bl *a, const vsip_vview_bl *b, const vsip_vview_bl *r);

Description

This function performs a logical XOR operation between corresponding elements of two boolean vectors a and b, storing
the result in the output vector r. The operation performs element-wise logical XOR:

ri=a;®b;

for all i from 0 to n — 1, where n is the length of the vectors.

Parameters

* const vsip_vview_p* a: First input boolean vector.
* const vsip_vview_p* b: Second input boolean vector.

* const vsip_vview_p* r: Output boolean vector that will store the result.

Example

vsip_vview_bl *a, *b, *r;
vsip_length n = 10;

// Create boolean wvectors

a = vsip_vcreate_bl(n, VSIP_MEM_NONE);
b = vsip_vcreate_bl(n, VSIP_MEM_NONE);
r = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Initialize vectors with some boolean values
// For ezample, set alternating true/false patterns
for (vsip_length i = 0; i < nj; i++) {
vsip_vput_bl(a, i, (i % 2) == 0); // true for even indices
vsip_vput_bl(b, i, (i % 3) == 0); // true for indices divisible by 3
}

// Perform logical AND operation
vsip_vxor_bl(a, b, r);

// The result wvector r will now contain true only where both
// a and b had true values (indices 0, 6)

// Clean up

vsip_valldestroy_bl(a);
vsip_valldestroy_bl(b);
vsip_valldestroy_bl(r);

Version 1.5, January 2026 - Release Version 142
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.5. BOOLEAN

4.5.5 vsip_valltrue_p - Check if All Elements in Boolean Vector are True

vsip_scalar_bl vsip_valltrue_bl(const vsip_vview_bl *a);

Description

This function checks whether all elements in a boolean vector are true. It returns a single boolean value that is true if
and only if every element in the input vector is true.
The function performs the following logical operation:

result=agAaiAagA...Aap_1

where a; are the elements of the input vector and »n is the length of the vector.

Parameters

* const vsip_vview_p* a: Input boolean vector to check.

Return Value

¢ Returns true if all elements in the vector are true.

* Returns false if any element in the vector is false or if the vector is empty.

Example

vsip_vview_bl *conditions;
vsip_length n = 10;
vsip_scalar_bl all_valid;

// Create and initialize a boolean wvector
conditions = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Set all elements to true (for demonstration)
vsip_vfill_bl(conditions, true);

// Check if all conditions are true
all_valid = vsip_valltrue_bl(conditions);
if (all_valid) {
printf("All conditions are satisfied.\n");
} else {
printf ("Some conditions are not satisfied.\n");

}

// For a more practical exzample:

for (vsip_length i = 0; i < nj; i++) {
// Set based on some actual conditions in your algorithm
vsip_vput_bl(conditions, i, (1 % 2) == 0); // Only even indices are true

}

all_valid = vsip_valltrue_bl(conditions);
// all_valid will be false in this case

// Clean up
vsip_valldestroy_bl(conditions);

Version 1.5, January 2026 - Release Version 143
Copyright © Adelsbach

4.5. BOOLEAN CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.5.6 vsip_vanytrue_p - Check if Any Element in Boolean Vector is True

vsip_scalar_bl vsip_vanytrue_bl(const vsip_vview_bl *a);

Description

This function checks whether any element in a boolean vector is true. It returns a single boolean value that is true if at

least one element in the input vector is true.
The function performs the following logical operation:

result=agVvaivasVv...Vva,_1

where a; are the elements of the input vector and »n is the length of the vector.

Parameters

* const vsip_vview_p* a: Input boolean vector to check.

Return Value

¢ Returns true if at least one element in the vector is true.

* Returns false if all elements in the vector are false or if the vector is empty.

Example

vsip_vview_bl *flags;
vsip_length n = 100;
vsip_scalar_bl any_flag_set;

// Create and initialize a boolean wvector
flags = vsip_vcreate_bl(n, VSIP_MEM_NONE) ;

// Set all elements to false initially
vsip_vfill _bl(flags, false);

// Set some flags based on your algorithm's conditions
// For example, set flag at index 42 to true
vsip_vput_bl(flags, 42, true);

// Check if any flag ts set

any_flag_set = vsip_vanytrue_bl(flags);

if (any_flag_set) {
printf ("At least one flag is set. Processing required.\n");
// Perform necessary processing for your application

} else {
printf("No flags are set. Skipping processing.\n");

}

// For a more practical exzample with actual conditions:
for (vsip_length i = 0; i < nj; i++) {
// Set based on some actual conditions in your algorithm

vsip_vput_bl(flags, i, (i % 7) == 0); // Set flags for indices divisible by 7

any_flag_set = vsip_vanytrue_bl(flags);
// any_flag_set will be true in this case

// Clean up
vsip_valldestroy_bl(flags);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

144

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.5. BOOLEAN

4.5.7 vsip_vindexbool - Find Indices of True Elements in Boolean Vector

vsip_length vsip_vindexbool(const vsip_vview_bl *a, vsip_vview_vi *index);

Description

This function finds the indices of all true elements in a boolean vector and stores them in an integer index vector. It
returns the number of true elements found.

The function scans the input boolean vector a and records the positions of all elements that are true in the output
index vector. The function returns the count of true elements found.

Parameters
* const vsip_vview_bl* a: Input boolean vector to search.

e vsip_vview_vi* index: Output integer vector that will store the indices of true elements. This vector must be
large enough to hold all potential true indices (i.e., its length should be at least equal to the length of the input
boolean vector).

Return Value

* Returns the number of true elements found in the input vector.

* Returns 0 if no true elements are found or if the input vector is empty.

Example

vsip_vview_bl *conditions;
vsip_vview_vi *indices;
vsip_length n = 100;
vsip_length true_count;

// Create boolean wvector
conditions = vsip_vcreate_bl(n, VSIP_MEM_NONE);

// Create index vector (same length as conditions)
indices = vsip_vcreate_vi(n, VSIP_MEM_NONE) ;

// Set some conditions to true (for ewzample, every 5th element)
for (vsip_length i = 0; i < nj; i++) {

vsip_vput_bl(conditions, i, (i % 5) == 0);
}

// Find indices of true elements
true_count = vsip_vindexbool(conditions, indices);

printf ("Found %lu true elements at positions:\n", true_count);
for (vsip_length i = 0; i < true_count; i++) {
printf("%1ld ", vsip_vget_vi(indices, i));
}
printf ("\n");

// Use the indices for further processing in your algortithms
// For ewample, you could use these indices to select specific elements
// from another vector that corresponds to your conditions

// Clean up
vsip_valldestroy_bl(conditions);
vsip_valldestroy_vi(indices);

Version 1.5, January 2026 - Release Version 145
Copyright © Adelsbach

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6 Manipulation Operations

Version 1.5, January 2026 - Release Version 146
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

4.6.1 vsip_vreal_p - Extract Real Part of a Complex Vector View

void vsip_vreal_f (const vsip_cvview_f* a, const vsip_vview_f* r);

Description

This function extracts the real part of the complex vector view a and stores the result in the real vector view r.

Parameters

* const vsip_cvview_p* a: Pointer to the source complex vector view.

* const vsip_vview_p* r: Pointer to the destination real vector view.

Example

vsip_cvview_f *complex_vector;
vsip_vview_f *real_vector;

// Assuming complex_vector and rTeal_vector have been properly initialized
vsip_vreal_f (complex_vector, real_vector);

Version 1.5, January 2026 - Release Version 147
Copyright © Adelsbach

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6.2 vsip_vimag_p - Extract Imaginary Part of a Complex Vector View

void vsip_vimag_f (const vsip_cvview_f* a, const vsip_vview_f* r);

Description

This function extracts the imaginary part of the complex vector view a and stores the result in the real vector view r.

Parameters

* const vsip_cvview_p* a: Pointer to the source complex vector view.

* const vsip_vview_p* r: Pointer to the destination real vector view.

Example

vsip_cvview_f *complex_vector;
vsip_vview_f *imag_vector;

// Assuming complex_vector and imag_vector have been properly initialized
vsip_vimag_f (complex_vector, imag_vector);

Version 1.5, January 2026 - Release Version 148
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

4.6.3 vsip_vcmplxz_p - Create a Complex Vector View from Real and Imaginary Parts

void vsip_vcmplx_f(const vsip_vview_f* a, const vsip_vview_f* b, const vsip_cvview_f* r);

Description

This function creates a complex vector view r from the real vector view a and the imaginary vector view b.

Parameters
* const vsip_vview_p* a: Pointer to the source real vector view.
* const vsip_vview_p* b: Pointer to the source imaginary vector view.

* const vsip_cvview_p* r: Pointer to the destination complex vector view.

Example

vsip_vview_f *real_vector;
vsip_vview_f *imag_vector;
vsip_cvview_f *complex_vector;

// Assuming real_vector, imag_vector, and complexz_vector have been properly initialized
vsip_vemplx_f(real_vector, imag_vector, complex_vector);

Version 1.5, January 2026 - Release Version 149
Copyright © Adelsbach

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6.4 vsip_dvgather_p - Gather Elements from a Vector

void vsip_vgather_i(const vsip_vview_i *a, const vsip_vview_vi *b, const vsip_vview_i *r);
void vsip_vgather_f (const vsip_vview_f *a, const vsip_vview_vi *b, const vsip_vview_f *r);
void vsip_cvgather_f (const vsip_cvview_f *a, const vsip_vview_vi *b, const vsip_cvview_f *r);

Description

This function gathers elements from an input integer vector a according to the indices specified in vector b, and stores
the results in output vector r. The operation performs:

rizabi

for all i from 0 to n — 1, where n is the length of the index and output vectors.

Parameters

* const vsip_dvview_p* a: Input integer vector from which elements are gathered.
* const vsip_vview_vi* b: Index vector containing the positions of elements to gather from a.

* const vsip_dvview_p* r: Output integer vector that will store the gathered elements.

Example

vsip_vview_i *data, *result;

vsip_vview_vi *indices;

vsip_length n = 10; // Number of elements to gather
vsip_length data_size = 100; // Size of input data vector

// Create wectors

data = vsip_vcreate_i(data_size, VSIP_MEM_NONE);
result = vsip_vcreate_i(n, VSIP_MEM_NONE);
indices = vsip_vcreate_vi(n, VSIP_MEM_NONE) ;

// Initialize data vector with some values

for (vsip_length i = 0; i < data_size; i++) {
vsip_vput_i(data, i, i * 10); // Ezample data

}

// Set up indices to gather (e.g., every 10th element)
for (vsip_length i = 0; i < nj; i++) {
vsip_vput_vi(indices, i, i * 10);

}

// Gather elements from data vector
vsip_vgather_i(data, indices, result);

// The result wvector now contains elements from data at positions:
// 0, 10, 20, 30, 40, 50, 60, 70, 80, 90

// Print results

printf ("Gathered elements:\n");

for (vsip_length i = 0; i < nj; i++) {
printf("/d ", vsip_vget_i(result, i));

}

printf ("\n");

// Clean up
vsip_valldestroy_i(data);
vsip_valldestroy_i(result);
vsip_valldestroy_vi(indices);

Version 1.5, January 2026 - Release Version 150
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

Notes
¢ The index vector b must contain valid indices for the input vector a (i.e., 0 < b; <length(a)).

¢ The output vector r must have the same length as the index vector b.

Version 1.5, January 2026 - Release Version 151
Copyright © Adelsbach

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6.5 vsip_dvscatter_p - Scatter Elements to a Vector

void vsip_vscatter_i(const vsip_vview_i *a, const vsip_vview_i *r, const vsip_vview_vi #b);
void vsip_vscatter_f(const vsip_vview_f *a, const vsip_vview_f *r, const vsip_vview_vi *b);
void vsip_cvscatter_f(const vsip_cvview_f *a, const vsip_cvview_f *r, const vsip_vview_vi *b);

Description

This function scatters elements from an input integer vector a into specific positions of an output vector r, with the
positions specified by the index vector b. The operation performs:

'y, =@;

for all i from 0 to n — 1, where n is the length of the input and index vectors.

Parameters
* const vsip_dvview_p* a: Input integer vector containing elements to scatter.
* const vsip_dvview_p* r: Output integer vector that will receive the scattered elements.

* const vsip_vview_vi* b: Index vector containing the positions in » where elements from a should be placed.

Example

vsip_vview_i *data, *result;

vsip_vview_vi *indices;

vsip_length n = 10; // Number of elements to scatter
vsip_length result_size = 100; // Size of output vector

// Create wectors

data = vsip_vcreate_i(n, VSIP_MEM_NONE) ;

result = vsip_vcreate_i(result_size, VSIP_MEM_NONE);
indices = vsip_vcreate_vi(n, VSIP_MEM_NONE) ;

// Initialize data vector with walues to scatter
for (vsip_length i = 0; i < nj; i++) {
vsip_vput_i(data, i, i * i); // Ezample: square numbers

}

// Initialize result vector (e.g., with zeros)
vsip_vfill_i(result, 0);

// Set up indices where to scatter elements (e.g., every 10th position)
for (vsip_length i = 0; i < nj; i++) {
vsip_vput_vi(indices, i, i * 10);

3

// Scatter elements to result wector
vsip_vscatter_i(data, result, indices);

// The result wvector now has non-zero values at positions:
// 0, 10, 20, 30, 40, 50, 60, 70, 80, 90
// containing the values from the data wvector

// Print some results
printf ("Scattered elements at positions:\n");
for (vsip_length i = 0; i < nj; i++) {
vsip_length pos = vsip_vget_vi(indices, 1i);
printf ("Position %1d: %d\n", pos, vsip_vget_i(result, pos));

Version 1.5, January 2026 - Release Version 152
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

// Clean up
vsip_valldestroy_i(data);
vsip_valldestroy_i(result);
vsip_valldestroy_vi(indices);

Notes
* The index vector b must contain valid indices for the output vector r (i.e., 0 < b; <length(r)).

* The input vector a and index vector b must have the same length.

Version 1.5, January 2026 - Release Version 153

Copyright © Adelsbach

4.6. MANIPULATION OPERATIONS

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6.6 vsip_dvswap_p - Swap Elements Between two Vectors

void vsip_vswap_i(const vsip_vview_i *a, const vsip_vview_i *b);
void vsip_vswap_f (const vsip_vview_f *a, const vsip_vview_f *b);

void vsip_cvswap_f(const vsip_cvview_f *a, const vsip_cvview_f *b);

Description

This function swaps the elements between two floating-point vectors a and b at Jan Adelsbach’s workspace. After the
operation, vector a will contain the elements that were originally in vector b, and vice versa. The operation performs an

element-wise swap:
temp=a;

a; =b;
b; =temp

for all i from O to n — 1, where n is the length of the vectors.

Parameters
* const vsip_dvview_p* a: First floating-point vector.

* const vsip_dvview_p* b: Second floating-point vector.

Example

vsip_vview_f *signall, *signal2;
vsip_length n = 1024; // Vector length

// Create vectors for your signal processing
signall = vsip_vcreate_f(n, VSIP_MEM_NONE);
signal2 = vsip_vcreate_f(n, VSIP_MEM_NONE);

// Initialize vectors with some data
// For ewample, fill with sample data for your algorithms
vsip_vramp_f(0.0f, 1.0f, signall); // signall = [0, 1, 2,

// Print some wvalues before swap

printf ("Before swap:\n");

printf("signall[0:4] = %.2f, %.2f, %.2f, %.2f\n",
vsip_vget_f(signall, 0), vsip_vget_f(signall, 1),
vsip_vget_f(signall, 2), vsip_vget_f(signall, 3));

printf("signal2[0:4] = %.2f, %.2f, %.2f, %.2f\n",
vsip_vget_f(signal2, 0), vsip_vget_f(signal2, 1),
vsip_vget_f(signal2, 2), vsip_vget_f(signal2, 3));

// Swap the vectors
vsip_vswap_f(signall, signal2);

// Now signall contains the original signall data and vice versa

printf ("\nAfter swap:\n");

printf("signall[0:4] = %.2f, %.2f, %.2f, %.2f\n",
vsip_vget_f(signall, 0), vsip_vget_f(signall, 1),
vsip_vget_f(signall, 2), vsip_vget_f(signall, 3));

printf ("signal2[0:4] = %.2f, %.2f, %.2f, %.2f\n",
vsip_vget_f(signal2, 0), vsip_vget_f(signal2, 1),
vsip_vget_f(signal2, 2), vsip_vget_f(signal2, 3));

// Clean up
vsip_valldestroy_f(signall);
vsip_valldestroy_f(signal2);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

L

vsip_vramp_f(10.0f, -0.5f, signal2); // signal2 = [10, 9.5, 9,

1023]

L

-502]

154

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

Notes
¢ Both vectors must have the same length.
¢ The operation is performed in-place on both vectors.
¢ This operation is more efficient than manually copying elements between vectors using a temporary buffer.

* Be cautious when using this function with vectors that might be views of the same underlying data, as this could
lead to unexpected results.

Version 1.5, January 2026 - Release Version 155
Copyright © Adelsbach

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6.7 vsip_vrect_p - Convert Cartesian Coordinates to Complex Numbers

void vsip_vrect_f(const vsip_vview_f *a, const vsip_vview_f *b, const vsip_cvview_f *r);

Description

This function converts pairs of real vectors representing Cartesian coordinates (real and imaginary parts) into a complex
vector.
The operation performs element-wise conversion:

rizai+j-bi

for all i from 0 to n — 1, where n is the length of the vectors, a; is the real part, b; is the imaginary part, and r; is the
resulting complex number.

Parameters

* const vsip_vview_p* a: Input vector containing real parts.
* const vsip_vview_p* b: Input vector containing imaginary parts.

* const vsip_cvview_p* r: Output complex vector that will store the results.

Example

vsip_vview_f *real_parts, *imag_parts;
vsip_cvview_f *complex_numbers;
vsip_length n = 10;

// Create wectors

real_parts = vsip_vcreate_f(n, VSIP_MEM_NONE) ;
imag_parts = vsip_vcreate_f(n, VSIP_MEM_NONE);
complex_numbers = vsip_cvcreate_f(n, VSIP_MEM_NONE);

// Initialize real and imaginary parts
// For exzample, create a complex signal
for (vsip_length i = 0; i < nj; i++) {
vsip_vput_f(real_parts, i, cos(2 * M_.PI * i / n)); // Real parts
vsip_vput_f (imag_parts, i, sin(2 * M_PI * i / n)); // Imaginary parts
}

// Convert to complex numbers
vsip_vrect_f (real_parts, imag_parts, complex_numbers);

// The complez_numbers vector now contains the complex representation
// of your signal, which can be used in further complexz operations

// Print some results

printf ("Complex numbers (first 3 elements):\n");

for (vsip_length i = 0; i < 3; i++) {
vsip_cscalar_f val = vsip_cvget_f (complex_numbers, 1i);
printf (" (%.4f, %.4f) ", val.r, val.i);

}

printf ("\n");

// Clean up
vsip_valldestroy_f(real_parts);
vsip_valldestroy_f (imag_parts);
vsip_cvalldestroy_f (complex_numbers) ;

Version 1.5, January 2026 - Release Version 156
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

Notes
¢ All three vectors must have the same length.

¢ This operation is the inverse of vsip_vpolar_p which converts from polar to Cartesian coordinates.

Version 1.5, January 2026 - Release Version 157
Copyright © Adelsbach

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

4.6.8 vsip_vpolar_p - Convert Polar Coordinates to Cartesian

void vsip_vpolar_f(const vsip_cvview_f *a, const vsip_vview_f *r, const vsip_vview_f *s);

Description

This function converts complex numbers from a complex vector into their polar coordinate representation (magnitude
and phase). The operation performs element-wise conversion from Cartesian to polar coordinates:

ri =lajl

s; = arg(a;)

for all i from O to n — 1, where n is the length of the vectors, r; is the magnitude, and s; is the phase (angle in radians)
of the complex number a;.

Parameters

® const vsip_cvview_p* a: Input complex vector.
* const vsip_vview_p* r: Output vector that will store the magnitudes.

* const vsip_vview_p* s: Output vector that will store the phases (in radians).

Example

vsip_cvview_f *complex_signal;
vsip_vview_f *magnitudes, *phases;
vsip_length n = 10;

// Create wectors

complex_signal = vsip_cvcreate_f(n, VSIP_MEM_NONE) ;
magnitudes = vsip_vcreate_f(n, VSIP_MEM_NONE) ;
phases = vsip_vcreate_f(n, VSIP_MEM_NONE);

// Initialize complez signal (e.g., with some complez values)
for (vsip_length i = 0; i < nj; i++) {

float real = cos(2 * M_PI *x i / n);

float imag = sin(2 * M_PI * i / n);

vsip_cvput_f (complex_signal, i, VSIP_CMPLX_F(real, imag));
}

// Convert to polar coordinates
vsip_vpolar_f (complex_signal, magnitudes, phases);

// The magnitudes and phases vectors now contain the polar representation
// of your complez signal

// Print some results
printf ("Magnitude and Phase (first 3 elements):\n");
for (vsip_length i = 0; i < 3; i++) {
printf ("Element %1ld: Magnitude = 7.4f, Phase = J,.4f radians\n",
i, vsip_vget_f (magnitudes, i), vsip_vget_f(phases, i));

}

// Clean up

vsip_cvalldestroy_f (complex_signal);
vsip_valldestroy_f (magnitudes);
vsip_valldestroy_f (phases);

Version 1.5, January 2026 - Release Version 158
Copyright © Adelsbach

CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS 4.6. MANIPULATION OPERATIONS

Notes
¢ All three vectors must have the same length.
¢ The phase values are returned in radians in the range [-7,7].

¢ This operation is the inverse of vsip_vrect_p which converts from Cartesian to polar coordinates.

Version 1.5, January 2026 - Release Version 159
Copyright © Adelsbach

4.6. MANIPULATION OPERATIONS CHAPTER 4. VECTOR AND ELEMENTWISE OPERATIONS

Version 1.5, January 2026 - Release Version 160
Copyright © Adelsbach

Chapter 5

Signal Processing Functions

161

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.1 FFT Functions

Version 1.5, January 2026 - Release Version 162
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.1 vsip_ddfftop_create_p - Create FFT Objects (Out-of-Place)

typedef enum _vsip_fft_dir {
VSIP_FFT_FWD = -1,
VSIP_FFT_INV +1

} vsip_fft_dir;

typedef enum _vsip_alg_hint {
VSIP_ALG_TIME = 0,
VSIP_ALG_SPACE 1,
VSIP_ALG_NOISE 2

} vsip_alg_hint;

I

vsip_fft_f* vsip_ccfftop_create_f(vsip_length length, vsip_scalar_f scale,
vsip_fft_dir sign, vsip_length ntimes,
vsip_alg_hint hint);

vsip_fft_f* vsip_rcfftop_create_f (vsip_length length, vsip_scalar_f scale,
vsip_fft_dir sign, vsip_length ntimes,
vsip_alg_hint hint);

vsip_fft_f* vsip_crfftop_create_f(vsip_length length, vsip_scalar_f scale,
vsip_fft_dir sign, vsip_length ntimes,
vsip_alg_hint hint);

Description

These functions create FFT (Fast Fourier Transform) objects for different types of FFT operations:
e vsip_ccfftop_create_p: Creates an FFT object for complex-to-complex out-of-place FFT.
e vsip_rcfftop_create_p: Creates an FFT object for real-to-complex out-of-place FFT.
* vsip_crfftop_create_p: Creates an FFT object for complex-to-real out-of-place FFT.

Each function initializes the FFT object with the specified length, scale factor, direction, number of times to apply
the FFT, and algorithm hint.

The performance for supported FFT sizes is standardized as O(nlogn). For sizes not directly supported by the FFT
kernels a DFT fallback with a performance of O(n2) is standardized.

Parameters

* vsip_length length: The length of the FFT.
¢ vsip_scalar_f scale: The scale factor to apply to the FFT result.
¢ vsip_fft_dir sign: The direction of the FFT.

— VSIP_FFT_FWD - Forward
— VSIP_FFT_INV - Inverse

¢ vsip_length ntimes: The number of times to apply the FFT.
* vsip_alg hint hint: Algorithm hint for the FFT.

— VSIP_ALG_TIME - Optimize for time
— VSIP_ALG_SPACE - Optimize for memory usage
— VSIP_ALG_NOISE - Optimize for noise

Return Value

¢ On success, a pointer to the newly created FFT object is returned.

¢ On error, NULL is returned.

Version 1.5, January 2026 - Release Version 163
Copyright © Adelsbach

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

Example

vsip_length length = 1024;

vsip_scalar_f scale = 1.0;

vsip_fft_dir direction = VSIP_FFT_FWD; // Forward FFT
vsip_length ntimes = 1;

vsip_alg_hint hint = VSIP_ALG_TIME;

vsip_fft_f *xfft_cc;
vsip_fft_f *fft_rc;
vsip_fft_f *xfft_cr;

// Create complexz-to-complex FFT object
fft_cc = vsip_ccfftop_create_f(length, scale, direction, ntimes, hint);
if (fft_cc == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 164
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.1. FFT FUNCTIONS

5.1.2 vsip_ccfftip_create_p - Create FFT Object (In-Place)

typedef enum _vsip_fft_dir {
VSIP_FFT_FWD -1,
VSIP_FFT_INV +1

} vsip_fft_dir;

typedef enum _vsip_alg_hint {
VSIP_ALG_TIME = 0,
VSIP_ALG_SPACE = 1,
VSIP_ALG_NOISE = 2

} vsip_alg_hint;

vsip_fft_f* vsip_ccfftip_create_f (vsip_length length, vsip_scalar_f scale,
vsip_fft_dir sign, vsip_length ntimes,

vsip_alg_hint hint);

Description

These functions create FFT (Fast Fourier Transform) object for a complex-to-complex in-place FFT. The functions ini-
tialize a FFT object with the specified length, scale factor, direction, number of times to apply the FFT, and algorithm

hint.

The performance for supported FFT sizes is standardized as O(nlogn). For sizes not directly supported by the FFT

kernels a DFT fallback with a performance of O(n2) is standardized.

Parameters

¢ vsip_length length: The length of the FFT.

* vsip_scalar_f scale: The scale factor to apply to the FFT result.

¢ yvsip_fft_dir sign: The direction of the FFT.

— VSIP_FFT_FWD - Forward
— VSIP_FFT_INV - Inverse

* vsip_length ntimes: The number of times to apply the FFT.
* vsip_alg_hint hint: Algorithm hint for the FFT.

— VSIP_ALG_TIME - Optimize for time
— VSIP_ALG_SPACE - Optimize for memory usage
— VSIP_ALG_NOISE - Optimize for noise

Return Value

¢ On success, a pointer to the newly created FFT object is returned.

® On error, NULL is returned.

Example

vsip_length length = 1024;

vsip_scalar_f scale = 1.0;

vsip_fft_dir direction = VSIP_FFT_FWD; // Forward FFT
vsip_length ntimes = 1;

vsip_alg_hint hint = VSIP_ALG_TIME;

vsip_fft_f *xfft_cc;
vsip_fft_f *xfft_rc;
vsip_fft_f *fft_cr;

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

165

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

// Create complexz-to-complex FFT object
fft_cc = vsip_ccfftip_create_f (length, scale, direction, ntimes, hint);
if (fft_cc == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 166
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.1. FFT FUNCTIONS

5.1.3 vsip_fft_destroy_p - Destroy an FFT Object

int vsip_fft_destroy_f(vsip_fft_f *fft);

Description

This function destroys the specified FFT object and frees associated resources.

Parameters

e vsip_fft_px* fft: Pointer to the FFT object to be destroyed.

Return Value

* Returns 0 on success.

¢ Returns a non-zero value on error.

Example

vsip_fft_f *xfft;
int result;

// Assuming fft has been properly initialized
result = vsip_fft_destroy_f(fft);

if (result '= 0) {
// Handle error
}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

167

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.1.4 vsip_fft_getattr_p - Get FFT Object Attributes

typedef struct _vsip_fft_attr_f {
vsip_scalar_vi input;
vsip_scalar_vi output;
vsip_fft_place place;
vsip_scalar_f scale;
vsip_fft_dir dir;

} vsip_fft_attr_f;

void vsip_fft_getattr_f(const vsip_fft_f *fft, vsip_fft_attr_f *attr);

Description

This function retrieves the attributes of an FFT (Fast Fourier Transform) object and stores them in the provided attribute
structure.

Parameters

* const vsip_fft_p* fft: Pointer to the FFT object.

e vsip_fft_attr_p* attr: Pointer to the attribute structure where the FFT object attributes will be stored.

Version 1.5, January 2026 - Release Version 168
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.5 vsip_ddfftop_p - Perform FFT Operations (Out-of-Place)

void vsip_ccfftop_f(const vsip_fft_f *fft, const vsip_cvview_f *x, const vsip_cvview_f *y);
void vsip_rcfftop_f(const vsip_fft_f *fft, const vsip_vview_f *x, const vsip_cvview_f *y);
void vsip_crfftop_f(const vsip_fft_f *fft, const vsip_cvview_f *x, const vsip_vview_f *y);

Description

These functions perform FFT (Fast Fourier Transform) operations using the specified FFT object. Each function handles
a different type of FFT:

* vsip_ccfftop_p: Performs a out-of-place complex-to-complex FFT.
* vsip_rcfftop_p: Performs a out-of-place real-to-complex FFT.
* vsip_crfftop_p: Performs a out-of-place complex-to-real FFT.

The performance for supported FFT sizes is standardized as O(nlogn). For sizes not directly supported by the FFT
kernels a DFT fallback with a performance of O(n2) is standardized.

Parameters
* const vsip_fft_px* fft: Pointer to the FFT object.
* const vsip_dvview_p* x: Pointer to the input complex vector view

* const vsip_dvview_p* y: Pointer to the output complex vector view

Example

vsip_fft_f *xfft_cc;

vsip_fft_f *xfft_rc;

vsip_fft_f *fft_cr;
vsip_cvview_f *complex_input;
vsip_cvview_f *complex_output;
vsip_vview_f *real_input;
vsip_vview_f *real_output;

// Assuming fft_cc, fft_rec, fft_cr, complez_input, complexz_output, real_input, and real_output have been g

// Perform complez-to-complex FFT
vsip_ccfftop_f(fft_cc, complex_input, complex_output);

Version 1.5, January 2026 - Release Version 169
Copyright © Adelsbach

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.1.6 vsip_ccfftip_p - Perform FFT Operations (In-Place)

void vsip_ccfftip_f(const vsip_fft_f *fft, const vsip_cvview_f x*y);

Description
These functions perform FFT (Fast Fourier Transform) operations using the specified FFT object in-place.
The performance for supported FFT sizes is standardized as O(nlogn). For sizes not directly supported by the FFT
kernels a DFT fallback with a performance of O(n?) is standardized.
Parameters

e const vsip_fft_p* fft: Pointer to the FFT object.

® const vsip_cvview_p* y: Pointer to the complex input and output vector view.

Version 1.5, January 2026 - Release Version 170
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.7 vsip_ddffmop_create_p - Create Multiple-FFT Objects (Out-of-Place)

typedef enum _vsip_fft_dir {
VSIP_FFT_FWD = -1,
VSIP_FFT_INV +1

} vsip_fft_dir;

typedef enum _vsip_alg_hint {
VSIP_ALG_TIME = O,
VSIP_ALG_SPACE 1,
VSIP_ALG_NOISE 2

} vsip_alg_hint;

typedef enum {
VSIP_ROW = O,
VSIP_COL = 1

} vsip_major;

vsip_fftm_f* vsip_ccfftmop_create_f(vsip_length m, vsip_length n,
vsip_scalar_f scale, vsip_fft_dir dir,
vsip_major major, vsip_length ntimes,
vsip_alg_hint hint);

vsip_fftm_f* vsip_crfftmop_create_f(vsip_length m, vsip_length n,
vsip_scalar_f scale, vsip_major major,
vsip_length ntimes, vsip_alg_hint hint);

vsip_fftm_fx vsip_rcfftmop_create_f(vsip_length m, vsip_length n,
vsip_scalar_f scale, vsip_major major,
vsip_length ntimes, vsip_alg_hint hint);

Description

These functions create Multiple-FFT (Fast Fourier Transform) objects for different types of FFT operations:
* vsip_ccffmop_create_p: Creates an Multiple-FFT object for complex-to-complex out-of-place FFT.
* vsip_rcffmop_create_p: Creates an Multiple-FFT object for real-to-complex out-of-place FFT.
* vsip_crffmop_create_p: Creates an Multiple-FFT object for complex-to-real out-of-place FFT.

Each function initializes the FFT object with the specified length, scale factor, direction, number of times to apply
the FFT, and algorithm hint.

The performance for supported FFT sizes is standardized as O(nlogn). For sizes not directly supported by the FFT
kernels a DFT fallback with a performance of O(n2) is standardized.

Parameters

¢ vsip_length m: The length of columns or rows, depending on the given major.
* vsip_length n: The length of rows or columns, depending on the given major.
* vsip_scalar_f scale: The scale factor to apply to the FFT result.

e vsip_fft_dir sign: The direction of the FFT.

— VSIP_FFT_FWD - Forward
— VSIP_FFT_INV - Inverse

* vsip_major major: Direction of the multiple-FFT:

— VSIP_ROW - Row Major
— VSIP_Col - Column Major

* vsip_length ntimes: The number of times to apply the FFT.

Version 1.5, January 2026 - Release Version 171
Copyright © Adelsbach

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

* vsip_alg hint hint: Algorithm hint for the FFT.

— VSIP_ALG_TIME - Optimize for time
— VSIP_ALG_SPACE - Optimize for memory usage
— VSIP_ALG_NOISE - Optimize for noise

Return Value

¢ On success, a pointer to the newly created FFT object is returned.

® On error, NULL is returned.

Version 1.5, January 2026 - Release Version

172
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.8 vsip_ccffmip_create_p - Create Multilpe-FFT Object (In-Place)

typedef enum _vsip_fft_dir {

VSIP_FFT_FWD
VSIP_FFT_INV

-1,
+1

} vsip_fft_dir;

typedef enum _vsip_alg_hint {
VSIP_ALG_TIME = O,

VSIP_ALG_SPACE
VSIP_ALG_NOISE

1,
2

} vsip_alg_hint;

vsip_fftm_f* vsip_ccfftmip_create_f(vsip_length m, vsip_length n,

vsip_scalar_f scale, vsip_fft_dir dir,
vsip_major major, vsip_length ntimes,
vsip_alg_hint hint);

Description

These functions create a Multiple-FFT (Fast Fourier Transform) object for a complex-to-complex in-place FFT. The
functions initialize a FFT object with the specified length, scale factor, direction, number of times to apply the FFT, and
algorithm hint.

Parameters

vsip_length m: The length of columns or rows, depending on the given major.
vsip_length n: The length of rows or columns, depending on the given major.
vsip_scalar_f scale: The scale factor to apply to the FFT result.
vsip_fft_dir sign: The direction of the FFT.

— VSIP_FFT_FWD - Forward
— VSIP_FFT_INV - Inverse

vsip_major major: Direction of the multiple-FFT:

— VSIP_ROW - Row Major
— VSIP_Col - Column Major

vsip_length ntimes: The number of times to apply the FFT.
vsip_alg_hint hint: Algorithm hint for the FFT.

— VSIP_ALG_TIME - Optimize for time
— VSIP_ALG_SPACE - Optimize for memory usage
— VSIP_ALG_NOISE - Optimize for noise

Return Value

On success, a pointer to the newly created FFT object is returned.

On error, NULL is returned.

Version 1.5, January 2026 - Release Version 173
Copyright © Adelsbach

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.1.9 vsip_fftm_destroy_p - Destroy a Multiple-FFT Object

int vsip_fftm_destroy_f(vsip_fftm_f *fft);

Description

This function destroys the specified Multiple-FFT object and frees associated resources.

Parameters

* vsip_fftm_p* fft: Pointer to the Multiple-FFT object to be destroyed.

Return Value

* Returns 0 on success.

¢ Returns a non-zero value on error.

Version 1.5, January 2026 - Release Version 174
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.10 vsip_fftm_getattr_p - Get Multple-FFT Object Attributes

typedef struct _vsip_fftm_attr_f {
vsip_scalar_mi input;
vsip_scalar_mi output;
vsip_fft_place place;
vsip_scalar_f scale;
vsip_fft_dir dir;
vsip_major major;

} vsip_fftm_attr_f;

void vsip_fftm_getattr_f (const vsip_fftm_f *fft, vsip_fftm_attr_f *attr);

Description

This function retrieves the attributes of an Multiple-FF'T (Fast Fourier Transform) object and stores them in the provided
attribute structure.

Parameters

* const vsip_fftm_p* fft: Pointer to the FFT object.

e vsip_fftm_attr_p* attr: Pointer to the attribute structure where the FFT object attributes will be stored.

Version 1.5, January 2026 - Release Version 175
Copyright © Adelsbach

5.1. FFT FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.1.11 vsip_ddffmop_p - Perform Multiple-FFT Operations (Out-of-Place)

void vsip_ccfftmop_f (const vsip_fftm_f *fft, const vsip_cmview_f *x, const vsip_cmview_f *y);
void vsip_crfftmop_f (const vsip_fftm_f *fft, const vsip_cmview_f *x, const vsip_mview_f *y);
void vsip_rcfftmop_f (const vsip_fftm_f *fft, const vsip_mview_f *x, const vsip_cmview_f *y);

Description

These functions perform Multiple-FFT (Fast Fourier Transform) operations using the specified FFT object. Each function
handles a different type of FFT:

* vsip_ccffmop_p: Performs a out-of-place complex-to-complex Multiple-FFT.
* vsip_rcffmop_p: Performs a out-of-place real-to-complex Multiple-FFT.

* vsip_crffmop_p: Performs a out-of-place complex-to-real Multiple-FFT.

Parameters

* const vsip_fftm_p* fft: Pointer to the FFT object.
* const vsip_dmview_p* x: Pointer to the input complex matrix view

* const vsip_dmview_p* y: Pointer to the output complex matrix view

Version 1.5, January 2026 - Release Version 176
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.1. FFT FUNCTIONS

5.1.12 vsip_ccffmip_p - Perform Multiple-FFT Operations (In-Place)

void vsip_ccffmip_f(const vsip_fftm_f *fft, const vsip_cmview_f *y);

Description

These functions perform Multiple-FFT (Fast Fourier Transform) operations using the specified FFT object in-place.

Parameters

* const vsip_fftm_p* fft: Pointer to the FFT object.

* const vsip_cmview_p* y: Pointer to the complex input and output matrix view.

Version 1.5, January 2026 - Release Version 177
Copyright © Adelsbach

5.2. CONVOLUTION AND CORRELATION FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.2 Convolution and Correlation Functions

Version 1.5, January 2026 - Release Version 178
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.2. CONVOLUTION AND CORRELATION FUNCTIONS

5.2.1 vsip_dconvld_create_p - Create 1D Convolution Object

typedef enum _vsip_alg_hint {
VSIP_ALG_TIME = 0,
VSIP_ALG_SPACE 1,
VSIP_ALG_NOISE 2

} vsip_alg_hint;

typedef enum _vsip_support_region {
VSIP_SUPPORT_FULL
VSIP_SUPPORT_SAME =
VSIP_SUPPORT_MIN = 2,
} vsip_support_region;

I
= O
.

typedef enum _vsip_symmetry {
VSIP_NONSYM =0,
VSIP_SYM_EVEN_LEN_0ODD
VSIP_SYM_EVEN_LEN_EVEN
} vsip_symmetry;

1,
2

vsip_convld_f* vsip_convld_create_f (const vsip_vview_f *h, vsip_symmetry symm, vsip_length n, vsip_length

Description

This function creates a one-dimensional convolution object. The convolution object can handle various types of impulse
responses and supports different output regions and decimation factors.

Parameters

* const vsip_dvview_p* h: Vector containing the impulse response (filter coefficients).
* vsip_symmetry symm: Symmetry of the impulse response:

— VSIP_SYM_EVEN_LEN_0ODD: Even symmetry, odd length
— VSIP_SYM_ODD_LEN_EVEN: Odd symmetry, even length
— VSIP_NOSYM: No symmetry

* vsip_length n: Length of the input signal.
* vsip_length d: Decimation factor (1 for no decimation).
* vsip_support_region support: Support region for the convolution:

— VSIP_SUPPORT_FULL: Full convolution. Output length is [(n + m —2)/d] + 1
— VSIP_SUPPORT_SAME: Same-length output. Output length is [(n —1)/d| + 1
— VSIP_SUPPORT_MIN: Minimum-length output. Output length is [(n — 1)/d] — [((m - 1)/d] + 1

* vsip_length ntimes: Number of times the convolution will be applied.
* vsip_alg_hint hint: Algorithm hint for optimization:

— VSIP_ALG_TIME: Optimize for computation time
— VSIP_ALG_SPACE: Optimize for memory usage
— VSIP_ALG_NOHINT: No specific optimization

Return Value

* On success: Pointer to the newly created 1D convolution object.

® On error (e.g., memory allocation failure): NULL.

Version 1.5, January 2026 - Release Version 179
Copyright © Adelsbach

5.2. CONVOLUTION AND CORRELATION FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

Example

vsip_convld_f *conv;

vsip_vview_f *h;

vsip_length h_len = 31; // Impulse response length
vsip_length n = 1024; // Input signal length
vsip_length d = 1; // No decimation

// Create impulse response vector
h = vsip_vcreate_f(h_len, VSIP_MEM_NONE);

// Initialize impulse response (e.g., Gaussian kernel)
// vsip_vramp_f(0.0f, 1.0f, h);
// Apply window function or other modifications to h...

// Create convolution object for full convolution
conv = vsip_convld_create_f(h, VSIP_SYM_NONE, n, d,
VSIP_SUPPORT_FULL, 100, VSIP_ALG_TIME);
if (conv == NULL) {
fprintf (stderr, "Error: Could not create convolution object\n");
return;

3

// Use the convolution object for your signal processing
// vsip_vview_f *input = vsip_vcreate_f(n, VSIP_MEM_NONE);

// vsip_vview_f *output = vsip_vcreate_f(n + h_len - 1, VSIP_MEM_NONE);

// vsip_convld_f(conv, input, output);
// Clean up when done

vsip_convld_destroy_f (conv);
vsip_vdestroy_£f(h);

Notes

* The convolution object should be destroyed with vsip_d convid_destroy_p when no longer needed.

* The decimation factor d allows for downsampling the output.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

180

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.2. CONVOLUTION AND CORRELATION FUNCTIONS

5.2.2 vsip_dconvld_destroy_p - Destroy 1D Convolution Object

vsip_length vsip_convid_destroy_f (vsip_convid_f *convid);

Description

This function releases all memory and resources associated with a 1D convolution object that was previously created
with vsip_dconvld_create_p.

Parameters

* vsip_dconvld_p* convld: Pointer to the 1D convolution object to be destroyed.

Return Value

¢ Returns 0.

Example

vsip_convld_f *conv;

vsip_vview_f x*h;

vsip_length h_len = 31; // Impulse response length
vsip_length n = 1024; // Input signal length

// Create impulse response vector
h = vsip_vcreate_f(h_len, VSIP_MEM_NONE) ;

// Create convolution object
conv = vsip_convld_create_f(h, VSIP_NOSYM, n, 1,
VSIP_SUPPORT_FULL, 100, VSIP_ALG_TIME);
if (conv == NULL) {
fprintf (stderr, "Error: Could not create convolution object\n");
return;

}

// Use the convolution object for your signal processing
// ... your convolution operations ...

// Destroy convolution object when done
vsip_convld_destroy_f (conv);
vsip_valldestroy_f(h);

Version 1.5, January 2026 - Release Version 181
Copyright © Adelsbach

5.2. CONVOLUTION AND CORRELATION FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.2.3 vsip_dconvlid_getattr_p - Get 1D Convolution Object Attributes

typedef struct _vsip_convid_attr_f {

vsip_scalar_vi kernel_len; // Kernel length
vsip_symmetry Symm; // Symmetry
vsip_scalar_vi data_len; // Data length
vsip_support_region support; // Support
vsip_scalar_vi out_len; // Output length
vsip_length decimation; // Decimation

} vsip_convid_attr_f;

void vsip_convid_getattr_f (const vsip_convld_f *convld, vsip_convld_attr_f *attr);

Description

This function retrieves the attributes of a 1D convolution object and stores them in the provided attribute structure.

Parameters
* const vsip_dconvld_p* convld: Pointer to the 1D convolution object created with vsip_dconvld_create_p.

* vsip_dconvld_attr_p* attr: Pointer to the attribute structure where the convolution object attributes will be
stored.

Example

vsip_convld_f *conv;

vsip_convld_attr_f attr;

vsip_vview_f x*h;

vsip_length h_len = 31; // Impulse response length
vsip_length n = 1024; // Input signal length

// Create impulse response vector
h = vsip_vcreate_f(h_len, VSIP_MEM_NONE);

// Create convolution object
conv = vsip_convld_create_f(h, VSIP_SYM_NONE, n, 1,
VSIP_SUPPORT_FULL, 100, VSIP_ALG_TIME);
if (conv == NULL) {
fprintf (stderr, "Error: Could not create convolution object\n");
return;

}

// Get the attributes of the convolution object
vsip_convid_getattr_f(conv, &attr);

// Clean up
vsip_convld_destroy_f (conv);
vsip_valldestroy_f(h);

Version 1.5, January 2026 - Release Version 182
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.2. CONVOLUTION AND CORRELATION FUNCTIONS

5.2.4 vsip_dconvolveld_p - Perform 1D Convolution

void vsip_convolveld_f (const vsip_convid_f *conv, const vsip_vview_f *x, const vsip_vview_f *y);

Description

This function performs one-dimensional convolution between an input signal x and the impulse response (filter kernel)
stored in the convolution object, storing the result in the output vector y. The convolution operation computes:

Yn = Zhn *Xn—k
k
where A is the impulse response stored in the convolution object, and x is the input signal.

Parameters

* const vsip_dconvld_p* conv: Pointer to the 1D convolution object created with vsip_dconvid_create_p.
* const vsip_dvview_p* x: Input signal vector of length n (as specified when creating the convolution object).

* const vsip_dvview_p* y: Output convolution vector. Its length depends on the support region specified on the
creation of the convolution object:

— VSIP_SUPPORT_FULL: Full convolution. Output length is |[(n + m —2)/d] + 1
— VSIP_SUPPORT_SAME: Same-length output. Output length is [(n — 1)/d] + 1
— VSIP_SUPPORT_MIN: Minimum-length output. Output length is [(n — 1)/d] — [(m - 1)/d] + 1

Notes

¢ The input vector x must have length n as specified when creating the convolution object.
¢ The output vector y must have the appropriate length based on the support region (see Parameters section).

¢ The convolution object can be reused for multiple convolution operations with different input signals.

Version 1.5, January 2026 - Release Version 183
Copyright © Adelsbach

5.2. CONVOLUTION AND CORRELATION FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.2.5 vsip_dcorrld_create_p - Create 1D Correlation Object

typedef enum _vsip_support_region {
VSIP_SUPPORT_FULL = O,
VSIP_SUPPORT_SAME = 1,
VSIP_SUPPORT_MIN 2,

} vsip_support_region;

typedef enum _vsip_alg_hint {
VSIP_ALG_TIME = 0,
VSIP_ALG_SPACE = 1,
VSIP_ALG_NOISE = 2

} vsip_alg_hint;

vsip_corrld_f* vsip_corrld_create_f(vsip_length m, vsip_length n, vsip_support_region support, vsip_lengtl
vsip_ccorrld_f* vsip_ccorrld_create_f(vsip_length m, vsip_length n, vsip_support_region support, vsip_leng
Description

This function creates a one-dimensional correlation object that can be used to compute the correlation between an input
signal and a reference signal.

The correlation object is optimized for repeated use, allowing efficient computation of correlations between signals of
length m and reference signals of length n.
Parameters

* vsip_length m: Length of the input signal.

* vsip_length n: Length of the reference signal.

* vsip_support_region support: Specifies the support region for the correlation:

— VSIP_SUPPORT_FULL: Compute full correlation. Output length is n+m — 1.
— VSIP_SUPPORT_SAME: Compute correlation with same-length output 7.
— VSIP_SUPPORT_MIN: Compute minimum-length correlation. Output length is [n —m|—1.

* vsip_length ntimes: Number of times the correlation will be applied.
* vsip_alg_hint hint: Algorithm hint for optimization:
— VSIP_ALG_TIME: Optimize for computation time

— VSIP_ALG_SPACE: Optimize for memory usage
— VSIP_ALG_NOHINT: No specific optimization

Return Value
¢ On success: Pointer to the newly created 1D correlation object.

® On error (e.g., memory allocation failure): NULL.

Example

vsip_corrld_f *corr;

vsip_length m = 1024; // Input signal length

vsip_length n = 64; // Reference signal length
vsip_length ntimes = 100; // Number of times to reuse object

// Create correlation object for full correlation
corr = vsip_corrld_create_f(m, n, VSIP_SUPPORT_FULL, ntimes, VSIP_ALG_TIME);
if (corr == NULL) {

fprintf (stderr, "Error: Could not create correlation object\n");

return -1;

Version 1.5, January 2026 - Release Version 184
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.2. CONVOLUTION AND CORRELATION FUNCTIONS

}

// Use the correlation object for your signal processing

// vsip_vview_f *input = vsip_vcreate_f(m, VSIP_MEM_NONE);

// vsip_vview_f *reference = vsip_vcreate_f(n, VSIP_MEM_NONE);

// vsip_vview_f *result = vsip_vcreate_f(m + n - 1, VSIP_MEM_NONE);
//

// wvsip_corrld_f(corr, input, reference, result);

// Clean up when done
vsip_corrld_destroy_f (corr);

Notes
¢ The correlation object should be destroyed with vsip_dcorrid_destroy_p when no longer needed.
* The choice of support affects the length of the output correlation vector:

— VSIP_SUPPORT_FULL: Output lengthisn+m —1
— VSIP_SUPPORT_SAME: Output length is n
— VSIP_SUPPORT_MIN: Output length is |[n —m|+1

* The ntimes parameter helps the library optimize memory allocation for repeated use.

Version 1.5, January 2026 - Release Version 185
Copyright © Adelsbach

5.2. CONVOLUTION AND CORRELATION FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.2.6 vsip_dcorrld_destroy_p - Destroy 1D Correlation Object
int vsip_corrild_destroy_f(vsip_corrid_f *cor);

int vsip_ccorrld_destroy_f (vsip_ccorrld_f *cor);

Description

This function releases all memory and resources associated with a 1D correlation object that was previously created
with vsip_dcorrld_create_p. It is essential to call this function when you no longer need the correlation object to
prevent memory leaks in your signal processing applications.

Parameters

* vsip_dcorrld_p* cor: Pointer to the 1D correlation object to be destroyed.

Return Value

¢ Returns 0.

Example

vsip_corrld_f *corr;

int status;

vsip_length m = 1024; // Input signal length
vsip_length n = 64; // Reference signal length

// Create correlation object
corr = vsip_corrld_create_f(m, n, VSIP_SUPPORT_FULL, 100, VSIP_ALG_TIME);
if (corr == NULL) {
fprintf (stderr, "Error: Could not create correlation object\n");
return -1;

}

// Use the correlation object for your signal processing

// vsip_vview_f *input = vsip_vcreate_f(m, VSIP_MEM_NONE);

// vsip_vview_f *reference = vsip_vcreate_f(n, VSIP_MEM_NONE);

// vsip_vview_f *result = vsip_vcreate_f(m + n - 1, VSIP_MEM_NONE);
// vsip_corrld_f(corr, input, reference, result);

// Destroy correlation object when done
vsip_corrild_destroy_f (corr);

Version 1.5, January 2026 - Release Version 186
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.2. CONVOLUTION AND CORRELATION FUNCTIONS

5.2.7 vsip_dcorrld_getattr_p - Get 1D Correlation Object Attributes

typedef struct _vsip_corrid_attr_f {

vsip_scalar_vi ref_len; // Reference length
vsip_scalar_vi data_len; // Data length
vsip_support_region support; // Support type
vsip_scalar_vi lag_len; // Lag length

} vsip_corrid_attr_f;

/* same for ccorrld */
typedef vsip_corrld_attr_f vsip_ccorrld_attr_f;

void vsip_corrld_getattr_f (const vsip_corrld_f *cor, vsip_corrld_attr_f *attr);
void vsip_ccorrld_getattr_f(const vsip_ccorrld_f *cor, vsip_ccorrld_attr_f *attr);

Description

This function retrieves the attributes of a 1D correlation object and stores them in the provided attribute structure.

Parameters

® const vsip_dcorrld_p* cor: Pointer to the 1D correlation object created with vsip_dcorrld_create_p.

* vsip_dcorrld_attr_p* attr: Pointer to the attribute structure where the correlation object attributes will be
stored.

Example

vsip_corrld_f *corr;

vsip_corrld_attr_f attr;

vsip_length m = 1024; // Input signal length
vsip_length n = 64; // Reference signal length

// Create correlation object
corr = vsip_corrld_create_f(m, n, VSIP_SUPPORT_FULL, 100, VSIP_ALG_TIME);
if (corr == NULL) {
fprintf (stderr, "Error: Could not create correlation object\n");
return;

}

// Get the attributes of the correlation object
vsip_corrld_getattr_f (corr, &attr);

printf ("1D Correlation Object Attributes:\n");
printf(" Ref length: %lu\n", attr.ref_len);
printf(" Data length: %lu\n", attr.data_len);
printf (" Support region: %d\n", attr.support);
printf(" Lag length: %lu\n", attr.lag_len);

// Clean up
vsip_corrld_destroy_f (corr);

Version 1.5, January 2026 - Release Version 187
Copyright © Adelsbach

5.2. CONVOLUTION AND CORRELATION FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.2.8 vsip_dcorrelateld_p - Compute 1D Correlation

typedef enum _visp_bias {
VSIP_BIASED 0,
VSIP_UNBIASED 1

} vsip_bias;

void vsip_correlateld_f (const vsip_corrld_f *cor, vsip_bias bias, const vsip_vview_f *h, const vsip_vview_
void vsip_ccorrelateld_f(const vsip_ccorrld_f *cor, vsip_bias bias, const vsip_cvview_f *h, const vsip_cvv

Description

This function computes the one-dimensional correlation between an input signal x and a reference signal A using the
pre-configured correlation object. The result is stored in the output vector y. The correlation operation computes:

Yn = Z hi Xnik
k
The exact form depends on the support region specified when creating the correlation object and the bias option.

Parameters

® const vsip_dcorrld_p* cor: Pointer to the 1D correlation object created with vsip_dcorrild_create_p.
* vsip_bias bias: Bias option for the correlation:

— VSIP_NOBIAS: No bias applied
— VSIP_BIASED: Bias applied (normalization)

* const vsip_dvview_p* h: Reference signal vector of length n.
* const vsip_dvview_p* x: Input signal vector of length m.

* const vsip_dvview_p* y: Output correlation vector. Its length depends on the support region specified in the
correlation object.

Example

vsip_corrld_f *corr;

vsip_vview_f *xh, *x, *y;

vsip_length m = 1024; // Input signal length
vsip_length n = 64; // Reference signal length
vsip_length y_len; // Output length

// Create correlation object for full correlation
corr = vsip_corrld_create_f(m, n, VSIP_SUPPORT_FULL, 100, VSIP_ALG_TIME);
if (corr == NULL) {
fprintf(stderr, "Error: Could not create correlation object\n");
return;

}

// Determine output length based on support region
vsip_corrld_attr_f attr;
vsip_corrld_getattr_f (corr, &attr);
y_len = (attr.support == VSIP_SUPPORT_FULL) ? m + n - 1 :
(attr.support == VSIP_SUPPORT_SAME) 7 m :
abs(m - n) + 1;

// Create wvectors

h = vsip_vcreate_f(n, VSIP_MEM_NONE); // Reference stignal

x = vsip_vcreate_f(m, VSIP_MEM_NONE); // Input signal

y = vsip_vcreate_f(y_len, VSIP_MEM_NONE); // Output correlation

Version 1.5, January 2026 - Release Version 188

Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.2. CONVOLUTION AND CORRELATION FUNCTIONS

// Initialize reference and input signals
// vsip_vramp_f(0.0f, 1.0f, h); // Ezample: linear ramp for reference
// vsip_vramp_f(0.0f, 0.5f, =); // Ezample: linear ramp for input

// Compute correlation without bias
vsip_correlateld_f(corr, VSIP_NOBIAS, h, x, y);

// Compute correlation with bias (normalized)
vsip_correlateld_f(corr, VSIP_BIASED, h, x, y);

// Clean up
vsip_corrld_destroy_f (corr);
vsip_valldestroy_f(h);
vsip_valldestroy_f(x);
vsip_valldestroy_£f(y);

Notes
¢ The input vectors 2 and x must have lengths matching those specified when the correlation object was created.
* The output vector y must have the appropriate length based on the support region:

— VSIP_SUPPORT_FULL:n+m-—1
— VSIP_SUPPORT_SAME: m
— VSIP_SUPPORT_MIN: |[n—m|+1

¢ The bias option affects the normalization of the result:

— VSIP_NOBIAS: No normalization applied
— VSIP_BIASED: Result is normalized

Version 1.5, January 2026 - Release Version 189
Copyright © Adelsbach

5.3. WINDOW FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.3 Window Functions

Version 1.5, January 2026 - Release Version 190
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.3. WINDOW FUNCTIONS

5.3.1 vsip_vcreate_blackman_p - Create a Blackman Window Vector

vsip_vview_f* vsip_vcreate_blackman_f(vsip_length n, vsip_memory_hint hint);

Description

This function creates and initializes a vector with coefficients of a Blackman window of length n. The Blackman window
is defined by the formula:

27k 47
wl[k]=0.42-0.5cos 1 +0.08cos

k
1% O<k<n

Parameters
¢ vsip_length n: The length of the window (number of elements in the vector).

¢ vsip_memory_hint hint: Memory allocation hint that can be used to optimize memory access:

VSIP_MEM_NONE - No memory hint

VSIP_MEM_RDONLY - The memory is to be used read-only

VSIP_MEM_CONST - The memory will hold constants

VSIP_MEM_SHARED - The memory will be shared

VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only
VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

* On success, returns a pointer to the newly created and initialized vector containing the Blackman window coeffi-
cients.

® On error (e.g., if memory allocation fails), returns NULL.

Example

vsip_vview_f *blackman_window;
vsip_length i, n = 64;

// Create a Blackman window of length 6/
blackman_window = vsip_vcreate_blackman_f(n, VSIP_MEM_NONE) ;

if (blackman_window == NULL) {
// Handle error
}

// Print the first 10 coefficients
printf ("First 10 Blackman window coefficients:\n");
for (i = 0; 1 < 10; i++) {
printf ("%21d: %f\n", i, vsip_vget_f(blackman_window, i));
}

// Use the window in a signal processing application

// For ewzample, apply it to a signal vector

vsip_vview_f *signal = vsip_vcreate_f(n, VSIP_MEM_NONE) ;
vsip_vview_f *windowed_signal = vsip_vcreate_f(n, VSIP_MEM_NONE);

// Initialize signal with some values. ..
// vsip_vfill_f(stgnal, 1.0f); // Ezample: constant signal

// Apply the window: windowed_signal = signal * blackman_window

vsip_vmul_f (signal, blackman_window, windowed_signal);

Version 1.5, January 2026 - Release Version 191
Copyright © Adelsbach

5.3. WINDOW FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

// Clean up

vsip_valldestroy_f (blackman_window) ;
vsip_valldestroy_f(signal);
vsip_valldestroy_f (windowed_signal);

Notes

¢ The window is symmetric for even-length vectors and nearly symmetric for odd-length vectors.

Version 1.5, January 2026 - Release Version 192

Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.3. WINDOW FUNCTIONS

5.3.2 vsip_vcreate_kaiser_p - Create a Kaiser Window Vector

vsip_vview_f* vsip_vcreate_kaiser_f(vsip_length n, vsip_scalar_f beta, vsip_memory_hint hint);

Description

This function creates and initializes a vector with coefficients of a Kaiser window of length n. The Kaiser window is
defined by:

Io(ﬁ 1- (2 -)2)
Iy(p)

where I is the zeroth-order modified Bessel function of the first kind.

wlk]= , 0<k<n

Parameters
¢ vsip_length n: Length of the window (number of elements in the vector).

* vsip_scalar_p beta: Shape parameter that controls the trade-off between main lobe width and side lobe atten-
uation, S.

* vsip_memory_hint hint: Memory allocation hint:

VSIP_MEM_NONE - No memory hint

VSIP_MEM_RDONLY - The memory is to be used read-only

VSIP_MEM_CONST - The memory will hold constants

VSIP_MEM_SHARED - The memory will be shared

VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only
VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value
¢ On success, returns a pointer to the newly created and initialized vector containing the Kaiser window coefficients.

¢ On error, returns NULL.

Example

vsip_vview_f *kaiser_win;
vsip_length n = 64;
vsip_scalar_f beta = 6.0f; // Moderate side lobe suppression

// Create a Kaiser window
kaiser_win = vsip_vcreate_kaiser_f(n, beta, VSIP_MEM_NONE);

if (kaiser_win == NULL) {
// Handle error
}

// Use the window in an application

// For ewzample, apply it to a signal

vsip_vview_f *signal = vsip_vcreate_f(n, VSIP_MEM_NONE) ;
vsip_vview_f *windowed_signal = vsip_vcreate_f(n, VSIP_MEM_NONE);

// Initialize signal...
// vsip_vramp_f(0.0f, 1.0f, signal);

// Apply the window

vsip_vmul_f (signal, kaiser_win, windowed_signal);

Version 1.5, January 2026 - Release Version 193
Copyright © Adelsbach

5.3. WINDOW FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

// Clean up
vsip_valldestroy_f(kaiser_win);
vsip_valldestroy_f(signal);
vsip_valldestroy_f (windowed_signal);

Notes

* The Kaiser window is symmetric for even-length vectors and nearly symmetric for odd-length vectors.
* Common f values and their approximate side lobe attenuations:

- p=0: Rectangular window (13 dB)
— B=3: 30 dB side lobe attenuation
- B=6: 50 dB side lobe attenuation
— f=28.6: 60 dB side lobe attenuation

Version 1.5, January 2026 - Release Version 194
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.3. WINDOW FUNCTIONS

5.3.3 vsip_vcreate_cheby_p - Create a Chebyshev Window Vector

vsip_vview_f* vsip_vcreate_cheby_f(vsip_length n, vsip_scalar_f ripple, vsip_memory_hint hint);

Description

This function creates and initializes a vector with coefficients of a Chebyshev (Dolph-Chebyshev) window of length n.
The Chebyshev window is designed to have equal ripple in the passband and is optimal in the sense that it minimizes
the main lobe width for a given side lobe level.

The ripple parameter specifies the side lobe level in decibels (dB), with typical values ranging from 40 to 120 dB.
Higher ripple values result in better side lobe suppression but wider main lobes.

Parameters
¢ vsip_length n: Length of the window (number of elements in the vector).
¢ vsip_scalar_f ripple: Side lobe level in dB (typically 40-120 dB).
¢ vsip_memory_hint hint: Memory allocation hint:

— VSIP_MEM_NONE - No memory hint

VSIP_MEM_RDONLY - The memory is to be used read-only

VSIP_MEM_CONST - The memory will hold constants

VSIP_MEM_SHARED - The memory will be shared

VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only
VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

¢ On success, returns a pointer to the newly created and initialized vector containing the Chebyshev window coeffi-
cients.

¢ On error, returns NULL.

Example

vsip_vview_f *cheby_win;
vsip_length n = 64;
vsip_scalar_f ripple = 60.0f; // 60 dB stide lobe attenuation

// Create a Chebyshev window
cheby_win = vsip_vcreate_cheby_f(n, ripple, VSIP_MEM_NONE);

if (cheby_win == NULL) {
// Handle error
}

// Use the window in an application

// For ewzample, apply it to a signal

vsip_vview_f *signal = vsip_vcreate_f(n, VSIP_MEM_NONE) ;
vsip_vview_f *windowed_signal = vsip_vcreate_f(n, VSIP_MEM_NONE);

// Initialize signal...
// vsip_vramp_f(0.0f, 1.0f, signal);

// Apply the window
vsip_vmul_f (signal, cheby_win, windowed_signal);

// Clean up

vsip_vdestroy_f (cheby_win) ;
vsip_vdestroy_f(signal);
vsip_vdestroy_f (windowed_signal);

Version 1.5, January 2026 - Release Version 195
Copyright © Adelsbach

5.3. WINDOW FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

Notes
¢ The Chebyshev window provides the narrowest main lobe for a given side lobe level.
¢ The window is symmetric for even-length vectors and nearly symmetric for odd-length vectors.

¢ Common ripple values:

40 dB: Moderate side lobe suppression

60 dB: Good side lobe suppression

80 dB: Excellent side lobe suppression

100 dB: Very high side lobe suppression

Version 1.5, January 2026 - Release Version 196
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.3. WINDOW FUNCTIONS

5.3.4 vsip_vcreate_hanning p - Create a Hanning Window Vector

vsip_vview_f* vsip_vcreate_hanning f(vsip_length n, vsip_memory_hint hint);

Description

This function creates and initializes a vector with coefficients of a Hanning window (also known as Hann window) of
length n. The Hanning window is defined by:

w[k]:0.5(1—cos(ZHkI)), O<k<n

Parameters
¢ vsip_length n: Length of the window (number of elements in the vector).

¢ vsip_memory_hint hint: Memory allocation hint:

VSIP_MEM_NONE - No memory hint

VSIP_MEM_RDONLY - The memory is to be used read-only

VSIP_MEM_CONST - The memory will hold constants

VSIP_MEM_SHARED - The memory will be shared

VSIP_MEM_SHARED_RDONLY - The memory will be shared and is read-only
VSIP_MEM_SHARED_CONST - The memory will be shared and will hold constants

Return Value

* On success, returns a pointer to the newly created and initialized vector containing the Hanning window coeffi-
cients.

® On error (e.g., if memory allocation fails), returns NULL.

Example

vsip_vview_f *hanning win;
vsip_length n = 64;

// Create a Hanning window
hanning win = vsip_vcreate_hanning f(n, VSIP_MEM_NONE);

if (hanning_win == NULL) {
// Handle error
}

// Print first 5 coefficients
printf ("First 5 Hanning window coefficients:\n");
for (int 1 = 0; i < 5; i++) {

printf ("%f\n", vsip_vget_f(hanning win, i));
}

// Use the window in a signal processing application

// For ewzample, apply it to a signal vector

vsip_vview_f *signal = vsip_vcreate_f(n, VSIP_MEM_NONE) ;
vsip_vview_f *windowed_signal = vsip_vcreate_f(n, VSIP_MEM_NONE);

// Initialize signal with some values (e.g., a sine wave)
// vsip_vramp_f(0.0f, 1.0f, signal);

// Apply the window: windowed_signal = signal * hanning_win

vsip_vmul_f (signal, hanning win, windowed_signal);

Version 1.5, January 2026 - Release Version 197
Copyright © Adelsbach

5.3. WINDOW FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

// Clean up

vsip_valldestroy_f (hanning win);
vsip_valldestroy_f(signal);
vsip_valldestroy_f (windowed_signal);

Notes

* The Hanning window is symmetric for even-length vectors and nearly symmetric for odd-length vectors.

Version 1.5, January 2026 - Release Version 198

Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.4. FIR

54 FIR

Version 1.5, January 2026 - Release Version 199
Copyright © Adelsbach

54. FIR

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.4.1 vsip_dfir_create_p - Create a FIR Filter

typedef enum _vsip_symmetry {
VSIP_NONSYM =0,
VSIP_SYM_EVEN_LEN_0DD
VSIP_SYM_EVEN_LEN_EVEN
} vsip_symmetry;

1,

typedef enum _vsip_obj_state {
VSIP_STATE_NO_SAVE = 1,
VSIP_STATE_SAVE 2

} vsip_obj_state;

typedef enum _vsip_alg_hint {
VSIP_ALG_TIME = 0,
VSIP_ALG_SPACE 1,
VSIP_ALG_NOISE 2

} vsip_alg_hint;

vsip_fir_f xvsip_fir_create_f(const vsip_vview_f *kernel, vsip_symmetry symm,

vsip_length n, vsip_length d,
vsip_obj_state state,
vsip_length ntimes, vsip_alg_hint hint);

vsip_cfir_f *vsip_cfir_create_f(const vsip_cvview_f *kernel, vsip_symmetry symm,

Description

vsip_length n, vsip_length d,
vsip_obj_state state,
vsip_length ntimes, vsip_alg_hint hint);

This function creates a FIR (Finite Impulse Response) filter with the specified kernel, symmetry, length, decimation
factor, state, number of times to apply the filter, and algorithm hint.

Parameters

* const vsip_dvview_p* kernel: Pointer to the kernel vector view.

* vsip_symmetry symm: Symmetry of the filter kernel.

— VSIP_NOSYM - No symmetry
— VSIP_SYM_EVEN_LEN_QODD - Odd symmetry
— VSIP_SYM_EVEN_LEN_EVEN - Even symmetry

* vsip_length n: Length of the filter.
¢ vsip_length d: Decimation factor.
* vsip_obj_state state: State of the filter object.

— VSIP_STATE_NO_SAVE - Do not save state
— VSIP_STATE_SAVE - Save state

* vsip_length ntimes: Number of times to apply the filter.
¢ vsip_alg_hint hint: Algorithm hint for the filter.

— VSIP_ALG_TIME - Optimize for time
— VSIP_ALG_SPACE - Optimize for memory usage
— VSIP_ALG_NOISE - Optimize for noise

Version 1.5, January 2026 - Release Version

Copyright © Adelsbach

200

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.4. FIR

Return Value
¢ On success, a pointer to the newly created FIR filter object is returned.

* On error, NULL is returned.

Example

vsip_vview_f *xkernel_view;
vsip_symmetry symm = VSIP_NONSYM;
vsip_length length = 10;

vsip_length decimation = 1;
vsip_obj_state state = VSIP_STATE_SAVE;
vsip_length ntimes = 1;

vsip_alg_hint hint VSIP_ALG_TIME;
vsip_fir_f *xfir_filter;

// Assuming kernel_view has been properly initialized
fir_filter = vsip_fir_create_f(kernel_view, symm, length, decimation, state, ntimes, hint);

if (fir_filter == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 201
Copyright © Adelsbach

54. FIR

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.4.2 vsip_dfir_reset_p - Reset a FIR Filter

void vsip_fir_reset_f(vsip_fir_f *filt);
void vsip_cfir_reset_f(vsip_cfir_f *filt);

Description

This function resets the specified FIR filter to its initial state.

Parameters

* vsip_dfir_p=* filt: Pointer to the FIR filter to be reset.

Example

vsip_fir_f *xfir_filter;

// Assuming fir_filter has been properly initialized
vsip_fir_reset_f(fir_filter);

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

202

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.4. FIR

5.4.3 vsip_dfir_getattr_p - Get Attributes of a FIR Filter

typedef struct _vsip_fir_attr_f{
vsip_scalar_vi kernel_len;
vsip_symmetry symm;
vsip_scalar_vi in_len;
vsip_scalar_vi out_len;
vsip_length decimation;
vsip_obj_state state;

} vsip_fir_attr_f;

void vsip_fir_getattr_f(const vsip_fir_f *fir, vsip_fir_attr_f *attr);
void vsip_cfir_getattr_f(const vsip_cfir_f *fir, vsip_cfir_attr_f *attr);

Description

This function retrieves the attributes of the specified FIR filter and stores them in the structure pointed to by attr.

Parameters

* const vsip_dfir_p#* fir: Pointer to the FIR filter.

* vsip_dfir_attr_p* attr: Pointer to a structure where the attributes will be stored.

Example

vsip_fir_f *xfir_filter;
vsip_fir_attr_f attributes;

// Assuming fir_filter has been properly initialized
vsip_fir_getattr_f(fir_filter, &attributes);

// The attributes of the FIR filter are now stored in 'attributes'’

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

203

54. FIR CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

54.4 vsip_dfirflt_p - Apply a FIR Filter to a Vector View

int vsip_firflt_f(vsip_fir_f *fir, const vsip_vview_f *x, const vsip_vview_f *y);
int vsip_cfirflt_f(vsip_cfir_f xfir, const vsip_cvview_f *x, const vsip_cvview_f *y);
Description

This function applies the specified FIR filter to the input vector view x and stores the result in the output vector view y.

Parameters
* vsip_dfir_p* fir: Pointer to the FIR filter.
* const vsip_dvview_p* x: Pointer to the input vector view.

* const vsip_dvview_p* y: Pointer to the output vector view.

Return Value

¢ Returns O on success.

e Returns a non-zero value on error.

Example

vsip_fir_f *xfir_filter;
vsip_vview_f *input_vector;
vsip_vview_f *output_vector;
int result;

// Assuming fir_filter, input_vector, and output_vector have been properly initialized
result = vsip_firflt_f(fir_filter, input_vector, output_vector);

if (result '= 0) {
// Handle error
}

Version 1.5, January 2026 - Release Version 204
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.4. FIR

5.4.5 vsip_dfir_destroy_p - Destroy a FIR Filter

int vsip_fir_destroy_f(vsip_fir_f *filt);
int vsip_cfir_destroy_f(vsip_cfir_f *filt);

Description

This function destroys the specified FIR filter and frees associated resources.

Parameters

* vsip_dfir_p=* filt: Pointer to the FIR filter to be destroyed.

Return Value

* Returns 0 on success.

¢ Returns a non-zero value on error.

Example

vsip_fir_f *xfir_filter;
int result;

// Assuming fir_filter has been properly initialized
result = vsip_fir_destroy_f(fir_filter);

if (result '= 0) {
// Handle error
}

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

205

5.5. MISCELLANEOUS SIGNAL PROCESSING FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

5.5 Miscellaneous Signal Processing Functions

Version 1.5, January 2026 - Release Version 206
Copyright © Adelsbach

CHAPTER 5. SIGNAL PROCESSING FUNCTIONS 5.5. MISCELLANEOUS SIGNAL PROCESSING FUNCTIONS

5.5.1 vsip_vhisto_p - Compute Histogram of a Vector View

typedef enum _vsip_hist_opt {
VSIP_HIST_RESET = 1,
VSIP_HIST_ACCUM = 2

} vsip_hist_opt;

void vsip_vhisto_f(const vsip_vview_f *src, vsip_scalar_f min_bin,
vsip_scalar_f max_bin, vsip_hist_opt opt,
const vsip_vview_f *hist);
Description
This function computes the histogram of the elements in the vector view src and stores the result in the vector view
hist. The histogram is computed over the range [min_bin, max_bin] with the specified binning options opt.
Parameters
* const vsip_vview_p* src: Pointer to the source vector view.
* vsip_scalar_p min_bin: The minimum value of the histogram bins.
* vsip_scalar_p max_bin: The maximum value of the histogram bins.
* vsip_hist_opt opt: Options for histogram computation.

— VSIP_HIST_RESET - Reset histogram and compute new
— VSIP_HIST_ACCUM - Accumulate with previous

* const vsip_vview_f* hist: Pointer to the destination vector view where the histogram will be stored.

Example

vsip_vview_f *src_vector_view;

vsip_scalar_f min_bin = 0.0;

vsip_scalar_f max_bin = 10.0;

vsip_hist_opt hist_options = VSIP_HIST_ACCUM;
vsip_vview_f *hist_vector_view;

// Assuming src_vector_view and hist_vector_view have been properly initialized
vsip_vhisto_f(src_vector_view, min_bin, max_bin, hist_options, hist_vector_view);

Version 1.5, January 2026 - Release Version 207
Copyright © Adelsbach

5.5. MISCELLANEOUS SIGNAL PROCESSING FUNCTIONS CHAPTER 5. SIGNAL PROCESSING FUNCTIONS

Version 1.5, January 2026 - Release Version 208
Copyright © Adelsbach

Chapter 6

Linear Algebra Functions

209

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1 Matrix and Vector Operations

Version 1.5, January 2026 - Release Version 210
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

6.1.1 vsip_dvdot_p - Compute the Dot Product of Two Vector Views
vsip_scalar_f vsip_vdot_f(const vsip_vview_f* a, const vsip_vview_f* b);
vsip_cscalar_f vsip_cvdot_f(const vsip_cvview_f* a, const vsip_cvview_f* b);
Description

This function computes the dot product of the vector views a and b and returns it. The dot product is computed as the
sum of the element-wise products of the corresponding elements in the two vectors.

Z a; bi
i
Parameters
* const vsip_dvview_p* a: Pointer to the first vector view.

* const vsip_dvview_p* b: Pointer to the second vector view.

Return Value

¢ The dot product of the two vector views.

Example

vsip_cvview_f *complex_vector_a;
vsip_cvview_f *complex_vector_b;
vsip_cscalar_f dot_product;

// Assuming complex_vector_a and complez_vector_b have been properly initialized
dot_product = vsip_cvdot_f (complex_vector_a, complex_vector_b);

Version 1.5, January 2026 - Release Version 211
Copyright © Adelsbach

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.2 vsip_cvjdot_p - Compute the Conjugate Dot Product of Two Complex Vector Views

vsip_cscalar_f vsip_cvjdot_f(const vsip_cvview_f* a, const vsip_cvview_f* b);

Description

This function computes the conjugate dot product of the complex vector views a and b and returns it. The conjugate dot
product is computed as the sum of the element-wise products of the corresponding elements in the first vector and the
conjugate of the elements in the second vector.

n —_—
Zaibi
13

Parameters

* const vsip_cvview_p* a: Pointer to the first complex vector view.

* const vsip_cvview_p* b: Pointer to the second complex vector view.

Return Value

* The conjugate dot product of the two complex vector views.

Example

vsip_cvview_f *complex_vector_a;
vsip_cvview_f *complex_vector_b;
vsip_cscalar_f conjugate_dot_product;

// Assuming complex_vector_a and complez_vector_b have been properly inttialized
conjugate_dot_product = vsip_cvjdot_f (complex_vector_a, complex_vector_b);

Version 1.5, January 2026 - Release Version 212
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

6.1.3 vsip_dvouter_p - Outer Product of Two Vectors
void vsip_vouter_f(vsip_scalar_f alpha, const vsip_vview_f *x, const vsip_vview_f *y, const vsip_mview_f 4
void vsip_cvouter_f(vsip_cscalar_f alpha, const vsip_cvview_f *x, const vsip_cvview_f *y, const vsip_cmvie
Description
This function computes the outer product of two vectors x and y, scaled by a, and stores the result in matrix r. The
outer product is defined as:

Tij=@ Xi'yj

for all i and j, where x; is the i-th element of vector x and y; is the j-th element of vector y.

Parameters

* vsip_dscalar_p alpha: Scalar multiplier for the outer product.
* const vsip_dvview_p* x: Pointer to the first input vector of length m.
* const vsip_dvview_px* y: Pointer to the second input vector of length n.

* const vsip_dmview_p* r: Pointer to the output matrix of size m x n that will store the result.

Example

vsip_vview_f *x, *y;
vsip_mview_f *r;
vsip_length m = 5, n = 4;

// Create wvectors and matriz

x = vsip_vcreate_f(m, VSIP_MEM_NONE) ;

y = vsip_vcreate_f(n, VSIP_MEM_NONE);

r = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);

// Initialize vectors
vsip_vramp_f(1.0f, 1.0f, x); // z =
vsip_vramp_f(0.5f, 0.5f, y); // vy

1, 2, 3, 4, 8]

[
[0.5, 1.0, 1.5, 2.0]

// Compute outer product: r = © * y°T
vsip_vouter_f(1.0f, x, y, 1)}

// Print the resulting matriz

printf ("Outer product result:\n");

for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < n; j++) {

printf("%8.2f ", vsip_mget_f(r, i, j));

}
printf ("\n");

}

// Compute scaled outer product: r» = 2.0 * ¢ * y°T
vsip_vouter_£(2.0f, x, y, r);

// Clean up

vsip_valldestroy_f(x);
vsip_valldestroy_£f(y);
vsip_malldestroy_f(xr);

Version 1.5, January 2026 - Release Version 213
Copyright © Adelsbach

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

Notes
¢ The output matrix r must have dimensions m x n where m is the length of vector x and » is the length of vector y.
¢ The outer product is not commutative: x® y # y ® x.

e If @ =0, the result will be a zero matrix regardless of the input vectors.

Version 1.5, January 2026 - Release Version 214
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

6.1.4 vsip_dmtrans_p - Matrix Transposition

void vsip_mtrans_f(const vsip_mview_f *a, const vsip_mview_f *c);
void vsip_cmtrans_f(const vsip_cmview_f *a, const vsip_cmview_f *c);

Description

This function computes the transpose of matrix A and stores the result in matrix C. The transpose operation exchanges
the rows and columns of the matrix, such that element c; ; of the output matrix is equal to element a;; of the input
matrix.

For an m x n input matrix A, the output matrix C must be of size n x m.

Parameters

* const vsip_dmview_p* a: Pointer to the input matrix of size m x n.

* const vsip_dmview_p* c: Pointer to the output matrix of size n x m that will store the transposed result.

Example

vsip_mview_f *A, *C;
vsip_length m = 3, n = 4;

// Create input matriz (3z4)
A = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);

// Initialize matriz A with some values
for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < n; j++) {
vsip_mput_f(A, i, j, (float)(i*n + j + 1));
}
}

// Create output matriz (4z3) for the transpose
C = vsip_mcreate_f(n, m, VSIP_ROW, VSIP_MEM_NONE);

// Compute the transpose: C = A°T
vsip_mtrans_f (A, C);

// Print the original and transposed matrices
printf ("Original matrix A (%lux%lu):\n", m, n);
for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < n; j++) {
printf("%6.1f ", vsip_mget_f(A, i, j));
}
printf ("\n");
}

printf ("\nTransposed matrix C (%lux%lu):\n", n, m);
for (vsip_index i = 0; i < nj; i++) {
for (vsip_index j = 0; j < m; j++) {
printf("%6.1f ", vsip_mget_£(C, i, j));

}

printf ("\n");
}
// Clean up

vsip_malldestroy_f(A);
vsip_malldestroy_£f(C);

Version 1.5, January 2026 - Release Version 215
Copyright © Adelsbach

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

Notes
¢ The output matrix C must have dimensions n x m where the input matrix A has dimensions m x n.

¢ For in-place transposition (when m = n), consider using vsip_dmtransview_p to create a transposed view.

Version 1.5, January 2026 - Release Version 216
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

6.1.5 vsip_cmherm_p - Matrix Hermitian

void vsip_cmherm_f (const vsip_cmview_f *a, const vsip_cmview_f *c);

Description

This function computes the hermitian of a complex matrix A and stores the result in matrix C. The Hermitian operation
exchanges the rows and columns of the matrix, such that element c; ; of the output matrix is equal to the conjugate of
element a;; of the input matrix.

For an m x n input matrix A, the output matrix C must be of size n x m.
Parameters

* const vsip_cmview_p* a: Pointer to the input matrix of size m x n.

* const vsip_cmview_p* c: Pointer to the output matrix of size n x m that will store the Hermitian result.

Notes

¢ The output matrix C must have dimensions n x m where the input matrix A has dimensions m x n.

¢ For in-place transposition (when m = n), consider using vsip_dmtransview_p to create a transposed view and
use the conjugate of the elements.

Version 1.5, January 2026 - Release Version 217
Copyright © Adelsbach

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.6 vsip_dgemp_p - General Matrix Product

typedef enum _vsip_mat_op {

VSIP_MAT_NTRANS = 0, // op(4) = A

VSIP_MAT_TRANS =1, // op(4) = A°T

VSIP_MAT_HERM = 2, // op(4) = A"H (complez only)
VSIP_MAT_CONJ =3 // op(X) = A~* (complez only)

} vsip_mat_op;

void vsip_gemp_f (vsip_scalar_f alpha, const vsip_mview_f *a, vsip_mat_op OpA, const vsip_mview_f *b, vsip_
void vsip_cgemp_f (vsip_cscalar_f alpha, const vsip_cmview_f *a, vsip_mat_op OpA, const vsip_cmview_f *b, v
Description

This function performs a generalized matrix-matrix operation of the form:

R=a-op(A)-op(B)+B-R
where op(X) can be X, XT or XH.

Parameters
* vsip_dscalar_f alpha: Scalar multiplier for the matrix product.
* const vsip_dmview_p* a: First input matrix.
* vsip_mat_op OpA: Operation to perform on matrix A:

VSIP_MAT_NTRANS: Use A as is

VSIP_MAT_TRANS: Use the transpose of, AT
VSIP_MAT_HERM: Use the conjugate transpose of AH
VSIP_MAT_CONJ: Use the conjugate of A*

* const vsip_dmview_p* b: Second input matrix.

¢ vsip_mat_op 0pB: Operation to perform on matrix B.

VSIP_MAT_NTRANS: Use A as is

VSIP_MAT_TRANS: Use the transpose of, AT
VSIP_MAT_HERM: Use the conjugate transpose of AH
VSIP_MAT_CONJ: Use the conjugate of A*

* vsip_dscalar_p beta: Scalar multiplier for matrix R.

* const vsip_dmview_p* r: Input/output matrix that contains the initial values and will store the result.

Example
vsip_mview_f *A, *B, *R;

vsip_length m = 3, n = 2, p = 4;

// Create matrices

A = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE) ;
B = vsip_mcreate_f(n, p, VSIP_ROW, VSIP_MEM_NONE);
R = vsip_mcreate_f(m, p, VSIP_ROW, VSIP_MEM_NONE);

// Initialize matrices with some wvalues

// Basic matriz multiplication: R = 4 * B
vsip_gemp_f(1.0f, A, VSIP_MAT_NTRANS, B, VSIP_MAT_NTRANS, 0.0f, R);

// Matriz multiplication with scaling: R = 2.0%4*B + R

Version 1.5, January 2026 - Release Version 218
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

vsip_gemp_f (2.0f, A, VSIP_MAT_NTRANS, B, VSIP_MAT_NTRANS, 1.0f, R);

// Transpose operations: R = A°T * B
vsip_gemp_f(1.0f, A, VSIP_MAT_TRANS, B, VSIP_MAT_NTRANS, 0.0f, R);

// Both transposed: R = AT * B"T
vsip_gemp_f(1.0f, A, VSIP_MAT_TRANS, B, VSIP_MAT_TRANS, 0.0f, R);

// Clean up

vsip_malldestroy_f(A);
vsip_malldestroy_£f(B);
vsip_malldestroy_f(R);

Notes
* The dimensions of the matrices must be compatible with the operation:

— If OpA = VSIP_MAT_NTRANS, rows of A must match rows of op(B).
— If OpA = VSIP_MAT_TRANS or VSIP_MAT_HERM, columns of A must match rows of op(B).

The result matrix R must have dimensions compatible with the operation.
¢ The operation is not commutative: A-B # B- A in general.

¢ Setting § = 0 results in R being overwritten with the matrix product.

Setting f = 1 results in the matrix product being added to R.

Version 1.5, January 2026 - Release Version

Copyright © Adelsbach

219

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.7 vsip_dgems_p - General Matrix Scaling and Addition

typedef enum _vsip_mat_op {

VSIP_MAT_NTRANS = 0, // op(4) = A

VSIP_MAT_TRANS =1, // op(4) = A°T

VSIP_MAT_HERM = 2, // op(4) = A"H (complez only)
VSIP_MAT_CONJ =3 // op(X) = A~* (complez only)

} vsip_mat_op;

void vsip_gems_f (vsip_scalar_f alpha, const vsip_mview_f *a, vsip_mat_op OpA, vsip_scalar_f beta, const vs
void vsip_cgems_f (vsip_cscalar_f alpha, const vsip_cmview_f *a, vsip_mat_op OpA, vsip_cscalar_f beta, cons
Description

This function performs a generalized matrix scaling and addition operation of the form:

R=a-op(A)+B-R
where op(A) can be A, AT or AH,

Parameters
* vsip_dscalar_p alpha: Scalar multiplier for matrix A.
* const vsip_dmview_p* a: Input matrix.
* vsip_mat_op OpA: Operation to perform on matrix A.

VSIP_MAT_NTRANS: Use A as is

VSIP_MAT_TRANS: Use the transpose of, AT
VSIP_MAT_HERM: Use the conjugate transpose of A
VSIP_MAT_CONJ: Use the conjugate of A*

* vsip_dscalar_p beta: Scalar multiplier for matrix R.

* const vsip_dmview_p* r: Input/output matrix that contains the initial values and will store the result.

Example
vsip_mview_f *A, *R;

vsip_length m = 3, n = 3;

// Create matrices
A = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE) ;
R = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);

// Initialize matrices with some wvalues

// Basic scaling: R = 2.0 # 4
vsip_gems_£f(2.0f, A, VSIP_MAT_NTRANS, 0.0f, R);

// Scale and add: R = 1.5%4 + R
vsip_gems_f(1.5f, A, VSIP_MAT_NTRANS, 1.0f, R);

// Transpose operation: R = A°T
vsip_gems_f(1.0f, A, VSIP_MAT_TRANS, 0.0f, R);

// Linear combination: R = 0.5%4 + 0.5*R
vsip_gems_£(0.5f, A, VSIP_MAT_NTRANS, 0.5f, R);

// Overwrite with scaled transpose: R = 3.0%4°T
vsip_gems_f(3.0f, A, VSIP_MAT_TRANS, 0.0f, R);

Version 1.5, January 2026 - Release Version 220
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

// Clean up
vsip_malldestroy_f(A);
vsip_malldestroy_f(R);

Notes

* The dimensions of matrices A and R must be compatible with the operation:

— If OpA = VSIP_MAT_NTRANS, rows of A must match rows of R.
— If OpA = VSIP_MAT_TRANS or VSIP_MAT_HERM, columns of A must match rows of (R).

¢ This function performs the operation in-place on matrix R.
¢ Setting § = 0 results in R being overwritten with the scaled matrix.

¢ Setting § =1 results in the scaled matrix being added to R.

Version 1.5, January 2026 - Release Version 221

Copyright © Adelsbach

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.8 vsip_dvmprod_p - Vector-Matrix Product

void vsip_vmprod_f(const vsip_vview_f *a, const vsip_mview_f *b, const vsip_vview_f *r);
void vsip_cvmprod_f (const vsip_cvview_f *a, const vsip_cmview_f *b, const vsip_cvview_f *r);
Description

This function computes the product of a vector and a matrix, storing the result in an output vector. The operation
performed is:

n
ri=) aj-bji
j=1

for i =1,2,...,m, where a is a vector of length n, b is an n x m matrix, and r is the resulting vector of length m.
This operation is equivalent to the matrix-vector product r =a” - b, where a” is the transpose of vector a.

Parameters

* const vsip_dvview_p* a: Input vector of length n.
* const vsip_dmview_p* b: Input matrix of size n x m.

* const vsip_dvview_p* r: Output vector of length m that will store the result.

Example

vsip_vview_f *a, *r;
vsip_mview_f *b;
vsip_length n = 4, m = 3;

// Create wector and matrices

a = vsip_vcreate_f(n, VSIP_MEM_NONE);

b = vsip_mcreate_f(n, m, VSIP_ROW, VSIP_MEM_NONE) ;
r = vsip_vcreate_f(m, VSIP_MEM_NONE) ;

// Initialize vector a and matriz b with some wvalues
vsip_vramp_f(1.0f, 1.0f, a); // a = [1, 2, 3, 4]

// Initialize matriz b (4z3)
for (vsip_index i = 0; i < nj; i++) {
for (vsip_index j = 0; j < m; j++) {
vsip_mput_£f(b, i, j, (float)(i*m + j + 1));
}
}

// Compute wvector-matriz product: v = a°T * b
vsip_vmprod_f(a, b, r);

// Print the result

printf ("Result vector r:\n");

for (vsip_index i = 0; i < m; i++) {
printf("%8.2f ", vsip_vget_f(r, i));

}

printf ("\n");

// Clean up

vsip_valldestroy_f(a);
vsip_malldestroy_f(b);
vsip_valldestroy_f(xr);

Version 1.5, January 2026 - Release Version 222
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

Notes
¢ The input vector @ must have length n.
¢ The input matrix b must have dimensions n x m.
¢ The output vector r must have length m.
* This operation is equivalent to the matrix-vector product r =a” - &.

* This operation is not commutative: a” -6 #b-a”.

Version 1.5, January 2026 - Release Version 223
Copyright © Adelsbach

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.9 vsip_dmvprod_p - Matrix-Vector Product

void vsip_mvprod_f(const vsip_mview_f *a, const vsip_vview_f *b, const vsip_vview_f *r);
void vsip_cmvprod_f (const vsip_cmview_f *a, const vsip_cvview_f *b, const vsip_cvview_f *r);
Description

This function computes the product of a matrix and a vector, storing the result in an output vector. The operation
performed is:

n
ri=) aijbj

j=1
for i =1,2,...,m, where a is an m x n matrix, b is a vector of length n, and r is the resulting vector of length m.
This operation is equivalent to the matrix-vector product r =a - b.

Parameters

* const vsip_dmview_p* a: Input matrix of size m x n.
* const vsip_dvview_p* b: Input vector of length n.

® const vsip_dvview_p* r: Output vector of length m that will store the result.

Example

vsip_mview_f *A;
vsip_vview_f *b, *r;
vsip_length m = 4, n = 3;

// Create matriz and vectors

A = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);
b = vsip_vcreate_f(n, VSIP_MEM_NONE) ;

r = vsip_vcreate_f(m, VSIP_MEM_NONE) ;

// Initialize matriz A and vector b with some values
// Initialize 4 (4fz3 matriz)
for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < n; j++) {
vsip_mput_f(A, i, j, (float)(i*n + j + 1));
}
}

// Initialize vector b
vsip_vramp_f(1.0f, 1.0f, b); // b = [1, 2, 3]

// Compute matriz-vector product: v = 4 * b
vsip_mvprod_f(A, b, r);

// Print the result

printf ("Matrix A (%lux%lu):\n", m, n);

for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < n; j++) {

printf("%8.2f ", vsip_mget_f(A, i, j));

}
printf ("\n");

}

printf ("\nVector b (%lu):\n", n);

for (vsip_index i = 0; i < nj; i++) {
printf("%8.2f ", vsip_vget_f(b, i));

}

Version 1.5, January 2026 - Release Version 224
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1. MATRIX AND VECTOR OPERATIONS

printf ("\n");

printf ("\nResult vector r (%1lu):\n", m);

for (vsip_index i = 0; i < m; i++) {
printf ("%8.2f ", vsip_vget_f(r, i));

}

printf ("\n");

// Clean up

vsip_malldestroy_f(A);
vsip_valldestroy_f(b);
vsip_valldestroy_f(r);

Notes

¢ The input matrix ¢ must have dimensions m x n.

¢ The input vector b must have length n.

The output vector » must have length m.

¢ This operation is equivalent to the matrix-vector product r =a - b.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

If you need to compute b7 -a (vector-matrix product), use vsip_dvmprod_p instead.

225

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.10 vsip_dmprod_p - Matrix-Matrix Product

void vsip_mprod_f (const vsip_mview_f *a, const vsip_mview_f *b, const vsip_mview_f *r);
void vsip_cmprod_f(const vsip_cmview_f *a, const vsip_cmview_f *b, const vsip_cmview_f *r);
Description

This function computes the matrix product of two matrices A and B, storing the result in matrix R. The operation
performed is:

n
rij=). @ikDrj
k=1
for all and j, where A is an m x n matrix, B is an n x p matrix, and R is the resulting m x p matrix.

Parameters
* const vsip_dmview_p* a: First input matrix of size m x n.
* const vsip_dmview_p* b: Second input matrix of size n x p.

* const vsip_dmview_p* r: Output matrix of size m x p that will store the result.

Example

vsip_mview_f *A, *B, *R;
vsip_length m = 3, n = 2, p = 4;

// Create matrices

A = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE) ;
B = vsip_mcreate_f(n, p, VSIP_ROW, VSIP_MEM_NONE) ;
R = vsip_mcreate_f(m, p, VSIP_ROW, VSIP_MEM_NONE);

// Initialize matrices 4 and B with some wvalues
// Initialize matriz A (322)
for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < n; j++) {
vsip_mput_f(A, i, j, (float)(i*n + j + 1));
}
}

// Initialize matriz B (2z4)
for (vsip_index i = 0; i < nj; i++) {
for (vsip_index j = 0; j < p; j++) {
vsip_mput_f(B, i, j, (float)(i*xp + j + 1));
}
}

// Compute matriz product: R = A4 * B
vsip_mprod_f(A, B, R);

// Print the matrices

printf ("Matrix A (%lux%lu):\n", m, n);

for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < nj; j++) {

printf("%8.2f ", vsip_mget_f(A, i, j));

}
printf ("\n");

}

printf ("\nMatrix B (%lux’lu):\n", n, p);
for (vsip_index i = 0; i < nj; i++) {

Version 1.5, January 2026 - Release Version 226
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1. MATRIX AND VECTOR OPERATIONS

for (vsip_index j = 0; j < p; j++) {
printf("%8.2f ", vsip_mget_f(B, i, j));
}
printf ("\n");
}

printf ("\nResult matrix R (%lux’%lu):\n", m, p);
for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < p; j++) {
printf("%8.2f ", vsip_mget_f(R, i, j));

}

printf ("\n");
}
// Clean up

vsip_malldestroy_f(A);
vsip_malldestroy_f(B);
vsip_malldestroy_f(R);

Notes

* The input matrices must have compatible dimensions: A must be m x n and B must be n x p.

* The output matrix R must have dimensions m x p.

* The matrix product is not commutative: A -B # B - A in general.

* If you need to compute AT - B or other variants, consider using vsip_dgemp_p instead.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

227

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.11 vsip_dmprodt_p - Matrix-Matrix Product with Transposition

void vsip_mprodt_f(const vsip_mview_f *a, const vsip_mview_f *b, const vsip_mview_f *r);
void vsip_cmprodt_f (const vsip_cmview_f *a, const vsip_cmview_f *b, const vsip_cmview_f *r);
Description

This function computes the product of matrix A and the transpose of matrix B, storing the result in matrix R. The
operation performed is:

n
rij=2. @ik bjk
k=1
for all i and j, where A is an m x n matrix, B is an p x n matrix, and R is the resulting m x p matrix.
This operation is equivalent to the matrix product R = A -BT.
Parameters
* const vsip_dmview_p* a: First input matrix of size m x n.
* const vsip_dmview_p* b: Second input matrix of size p x n (will be transposed in the operation).

* const vsip_dmview_p* r: Output matrix of size m x p that will store the result.

Example

vsip_mview_f *A, *B, *R;
vsip_lengthm = 3, n = 4, p = 2;

// Create matrices

A = vsip_mcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE); // 3z/ matriz

B = vsip_mcreate_f(p, n, VSIP_ROW, VSIP_MEM_NONE); // 2z/ matriz

R = vsip_mcreate_f(m, p, VSIP_ROW, VSIP_MEM_NONE); // 3z2 result matriz

// Initialize matrices A and B with some wvalues
// Initialize matriz 4 (3z4)
for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < nj; j++) {
vsip_mput_f(A, i, j, (float)(i*n + j + 1));
}
}

// Initialize matriz B (2z4)
for (vsip_index i = 0; i < p; i++) {
for (vsip_index j = 0; j < n; j++) {
vsip_mput_f(B, i, j, (float)(i*n + j + 1));
}
}

// Compute matriz product with transposition: R = A * BT
vsip_mprodt_f(A, B, R);

// Print the matrices

printf ("Matrix A (%lux%lu):\n", m, n);

for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < nj; j++) {

printf("%8.2f ", vsip_mget_f(A, i, j));

}
printf ("\n");

}

printf ("\nMatrix B (%lux)lu):\n", p, n);

Version 1.5, January 2026 - Release Version 228
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1. MATRIX AND VECTOR OPERATIONS

for (vsip_index i = 0; i < p; it++) {
for (vsip_index j = 0; j < nj; j++) {
printf("%8.2f ", vsip_mget_f(B, i, j));
}
printf ("\n");
}

printf ("\nResult matrix R = A * B~T (}lux%lu):\n", m, p);

for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < p; j++) {
printf("%8.2f ", vsip_mget_f(R, i, j));

}

printf ("\n");
}
// Clean up

vsip_malldestroy_f(A);
vsip_malldestroy_f(B);
vsip_malldestroy_f(R);

Notes

¢ The input matrices must have compatible dimensions: Both A and B must have the same number of columns ().

¢ The output matrix R must have dimensions m x p, where m is the number of rows in A and p is the number of

rows in B.

¢ This operation is equivalent to computing the covariance matrix when A and B contain centered data.

¢ If you need more flexibility in choosing which matrix to transpose, consider using vsip_dgemp_p instead.

Version 1.5, January 2026 - Release Version
Copyright © Adelsbach

229

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.12 vsip_cmprodh_p - Complex Matrix Product with Hermitian Transpose

void vsip_cmprodh_f (const vsip_cmview_f *a, const vsip_cmview_f *b, const vsip_cmview_f *r);

Description

This function computes the product of a complex matrix A with the Hermitian transpose of a complex matrix B, storing
the result in complex matrix R. The operation performed is:

n
rij=2 @ik Djn
k=1

for all i and j, where A is an m x n complex matrix, B is a p x n complex matrix, and R is the resulting m x p complex

matrix. b;; denotes the complex conjugate of b ;.

Parameters

* const vsip_cmview_p* a: First input matrix of size m x n (complex).

® const vsip_cmview_p* b: Second input matrix of size p x n (complex), which will be Hermitian transposed in
the operation.

* const vsip_cmview_p* r: Output matrix of size m x p (complex) that will store the result.

Example

vsip_cmview_f *A, *B, *R;
vsip_length m = 2, n = 3, p = 2;

// Create complexz matrices

A = vsip_cmcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);
B = vsip_cmcreate_f(p, n, VSIP_ROW, VSIP_MEM_NONE);
R = vsip_cmcreate_f(m, p, VSIP_ROW, VSIP_MEM_NONE);

// Initialize matrices 4 and B with complez values
for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < n; j++) {
vsip_cscalar_f val = VSIP_CMPLX_F(i*n + j + 1, -(i*n + j + 1));
vsip_cmput_f(A, i, j, val);

}

for (vsip_index i = 0; i < p; i++) {
for (vsip_index j = 0; j < nj; j++) {
vsip_cscalar_f val = VSIP_CMPLX_F(i*n + j + 1, i*n + j + 2);
vsip_cmput_f(B, i, j, val);

}

// Compute matriz product with Hermitian transpose: R = A * B"H
vsip_cmprodh_f(A, B, R);

// Print the result
printf ("Result matrix R = A * B~H (%lux%lu):\n", m, p);
for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < p; j++) {
vsip_cscalar_f val = vsip_cmget_f(R, i, j);
printf (" (%.2f%+.2fi) ", val.r, val.i);

}
printf ("\n");
}
Version 1.5, January 2026 - Release Version 230

Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

// Clean up

vsip_cmalldestroy_f(A);
vsip_cmalldestroy_f (B);
vsip_cmalldestroy_f (R);

Notes

* The input matrices must have compatible dimensions: Both matrices A and B must have the same number of
columns (n).

* The output matrix R must have dimensions m x p, where m is the number of rows in A and p is the number of
rows in B.

¢ If you need more flexibility in choosing which matrix to transpose, consider using vsip_cgemp_p instead.

Version 1.5, January 2026 - Release Version 231

Copyright © Adelsbach

6.1. MATRIX AND VECTOR OPERATIONS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.1.13 vsip_cmprodj_p - Complex Matrix Product with Conjugate

void vsip_cmprodj_f(const vsip_cmview_f *a, const vsip_cmview_f *b, const vsip_cmview_f *r);

Description

This function computes the product of a complex matrix A with the element-wise conjugate of a complex matrix B,
storing the result in complex matrix R. The operation performed is:

n
rij=2 @ik Dr,;
k=1

for all i and j, where A is an m x n complex matrix, B is an n x p complex matrix, and R is the resulting m x p
complex matrix. by, ; denotes the complex conjugate of by, ;.
Parameters

* const vsip_cmview_p* a: First input matrix of size m x n (complex).

* const vsip_cmview_p* b: Second input matrix of size n x p (complex), whose elements will be conjugated in the
operation.

* const vsip_cmview_p* r: Output matrix of size m x p (complex) that will store the result.

Example

vsip_cmview_f *A, *B, *R;
vsip_length m = 2, n = 3, p = 2;

// Create complexz matrices

A = vsip_cmcreate_f(m, n, VSIP_ROW, VSIP_MEM_NONE);
B = vsip_cmcreate_f(n, p, VSIP_ROW, VSIP_MEM_NONE);
R = vsip_cmcreate_f(m, p, VSIP_ROW, VSIP_MEM_NONE);

// Initialize matrices 4 and B with complez values
for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < n; j++) {
vsip_cscalar_f val = VSIP_CMPLX_F(i*n + j + 1, -(i*n + j + 1));
vsip_cmput_f(A, i, j, val);

}

for (vsip_index i = 0; i < nj; i++) {
for (vsip_index j = 0; j < p; j++) {
vsip_cscalar_f val = VSIP_CMPLX_F(i*p + j + 1, i*p + j + 2);
vsip_cmput_f(B, i, j, val);

}

// Compute matriz product with conjugate: R = 4 * conj(B)
vsip_cmprodj_f(A, B, R);

// Print the result
printf ("Result matrix R = A * conj(B) (%lux%lu):\n", m, p);
for (vsip_index i = 0; i < m; i++) {
for (vsip_index j = 0; j < p; j++) {
vsip_cscalar_f val = vsip_cmget_f(R, i, j);
printf (" (%.2f%+.2fi) ", val.r, val.i);

}
printf ("\n");
}
Version 1.5, January 2026 - Release Version 232

Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.1. MATRIX AND VECTOR OPERATIONS

// Clean up

vsip_cmalldestroy_f(A);
vsip_cmalldestroy_f (B);
vsip_cmalldestroy_f (R);

Notes

* The input matrices must have compatible dimensions: A must be m x n and B must be n x p.
¢ The output matrix R must have dimensions m x p.
¢ This operation is different from vsip_cmprodh_p which uses the Hermitian transpose of the second matrix.

* The element-wise conjugation of B affects only the imaginary parts of its elements, changing their sign.

Version 1.5, January 2026 - Release Version 233

Copyright © Adelsbach

6.2. SPECIAL LINEAR SOLVERS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.2 Special Linear Solvers

Version 1.5, January 2026 - Release Version 234
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.2. SPECIAL LINEAR SOLVERS

6.2.1 vsip_dtoepsol_p - Solve a Toeplitz System of Equations
int vsip_toepsol_f(const vsip_vview_f* t, const vsip_vview_f* r, const vsip_vview_f* b, const vsip_vview_f
int vsip_ctoepsol_f(const vsip_cvview_f* t, const vsip_cvview_f* r, const vsip_cvview_f* b, const vsip_cvv
Description
This function solves a real Toeplitz system of linear equations Tx = b, where T is a symmetric Toeplitz matrix defined
by its first column t and first row r, b is the right-hand side vector, and x is the solution vector. The Toeplitz matrix has
constant diagonals, with the first column t and first row r defining the matrix structure.
Parameters
* const vsip_dvview_p* t: Pointer to the vector view containing the first column of the Toeplitz matrix.
* const vsip_dvview_p* r: Pointer to the vector view containing the first row of the Toeplitz matrix.

* const vsip_dvview_p* b: Pointer to the vector view containing the right-hand side vector.

* const vsip_dvview_p* x: Pointer to the vector view where the solution will be stored.

Return Value

¢ Returns 0 on success.

¢ Returns a non-zero value on error (e.g., if the Toeplitz matrix is singular).

Example

vsip_vview_f *toeplitz_col;
vsip_vview_f *toeplitz_row;
vsip_vview_f *rhs_vector;
vsip_vview_f *solution_vector;
int result;

// Assuming all vector views have been properly initialized
result = vsip_toepsol_f (toeplitz_col, toeplitz_row, rhs_vector, solution_vector);

if (result !'= 0) {
// Handle error (e.g., singular matriz)

3

Version 1.5, January 2026 - Release Version 235
Copyright © Adelsbach

6.2. SPECIAL LINEAR SOLVERS CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.2.2 vsip_dcovsol_p - Solve a Covariance System of Equations

int vsip_covsol_f (const vsip_vview_f* r, const vsip_vview_f* b, const vsip_vview_f* x);

int vsip_ccovsol_f(const vsip_cvview_f* r, const vsip_cvview_f* b, const vsip_cvview_f* x);
Description

This function solves a covariance system of linear equations Tx = b, where T is a symmetric positive definite Toeplitz
covariance matrix defined by its first column r, b is the right-hand side vector, and x is the solution vector. The covariance
matrix is a special type of Toeplitz matrix where the first column r completely defines the matrix structure.

This function is particularly useful in signal processing applications such as linear prediction and Wiener filtering,
where covariance matrices frequently appear.

Parameters

* const vsip_dvview_p* r: Pointer to the vector view containing the first column of the covariance matrix (auto-
correlation sequence). The length of this vector determines the size of the covariance matrix.

* const vsip_dvview_p* b: Pointer to the vector view containing the right-hand side vector.

* const vsip_dvview_p* x: Pointer to the vector view where the solution will be stored.

Return Value

* Returns 0 on success.

¢ Returns a non-zero value on error (e.g., if the covariance matrix is singular or not positive definite).

Example

vsip_vview_f *covariance_vector;
vsip_vview_f *rhs_vector;
vsip_vview_f *solution_vector;
int result;

// Assuming all vector views have been properly initialized
// and covariance_vector contains the autocorrelation sequence
result = vsip_covsol_f(covariance_vector, rhs_vector, solution_vector);

if (result !'= 0) {
// Handle error (e.g., singular or non-positive definite matriz)

Notes
* The covariance matrix is assumed to be symmetric and positive definite.
¢ The length of the covariance vector r should be one more than the length of vectors b and x.

¢ This function uses a Levinson-Durbin recursion algorithm for efficient solution of the covariance system.

Version 1.5, January 2026 - Release Version 236
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.2. SPECIAL LINEAR SOLVERS

6.2.3 vsip_dllsgsol_p - Solve Linear Least Squares Problem

int vsip_llsqgsol_f(const vsip_mview_f* A, const vsip_vview_f* b, const vsip_vview_f* x);
int vsip_cllsqsol_f(const vsip_cmview_f* A, const vsip_cvview_f* b, const vsip_cvview_f* x);

Description

This function solves the linear least squares problem:
mxin lAx—bll2

where A is an M x N matrix with M = N, b is an M-dimensional vector, and x is the N-dimensional solution vector that
minimizes the Euclidean norm of the residual vector.

The function uses QR decomposition with column pivoting to solve the least squares problem, which provides a
numerically stable solution even when matrix A is rank-deficient.

Parameters

* const vsip_dmview_p* A:Pointer to the M x N matrix view of coefficients.
* const vsip_dvview_p* b: Pointer to the M-dimensional vector view containing the right-hand side.

* const vsip_dvview_p* x: Pointer to the N-dimensional vector view where the least squares solution will be
stored.

Return Value

* Returns 0 on success.

* Returns a non-zero value on error (e.g., if matrix dimensions are incompatible or memory allocation fails).

Example

vsip_mview_f *A; // MxN coefficient matriz

vsip_vview_f *b; // M-dimenstional right-hand side vector
vsip_vview_f *x; // N-dimensional solution wvector

int result;

// Assuming A, b, and = have been properly initialized with appropriate dimensions
result = vsip_llsqgsol_f(A, b, x);

if (result '= 0) {
// Handle error

}
Notes
* The number of rows M in matrix A must be greater than or equal to the number of columns N.
¢ The solution x minimizes the 2-norm of the residual vector Ax —b.
¢ If A has full column rank, the solution is unique. If A is rank-deficient, the function returns a basic solution with
at most rank(A) non-zero components.
¢ This function is particularly useful for overdetermined systems where there is no exact solution, but a best-fit
solution is desired.
Version 1.5, January 2026 - Release Version 237

Copyright © Adelsbach

6.3. GENERAL LINEAR SQUARE SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.3 General Linear Square System Solver

Version 1.5, January 2026 - Release Version 238
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.3. GENERAL LINEAR SQUARE SYSTEM SOLVER

6.3.1 vsip_dlud_create_p - Create LU Decomposition Object
vsip_lu_f* vsip_lud_create_f(vsip_length n);

vsip_clu_f* vsip_clud_create_f(vsip_length n);

Description

This function creates an LU decomposition object for factoring an n x n matrix into the product of a lower triangular
matrix L and an upper triangular matrix U. The object can be reused for multiple decompositions of matrices with the
same dimensions.

Parameters

¢ vsip_length n: Number of rows and columns in the matrix to be decomposed.

Return Value
* On success, a pointer to the newly created LU decomposition object is returned.

® On error, NULL is returned.

Example

vsip_lu_f *lu_obj;
vsip_length n = 100;

// Create LU decomposition object
lu_obj = vsip_lud_create_f(n);

if (1u_obj == NULL) {
// Handle error
}

Version 1.5, January 2026 - Release Version 239
Copyright © Adelsbach

6.3. GENERAL LINEAR SQUARE SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.3.2 vsip_dlud_destroy_p - Destroy LU Decomposition Object
int vsip_lud_destroy_f(vsip_lu_f *1lu);

int vsip_clud_destroy_f(vsip_clu_f *1lu);

Description

This function destroys an LU decomposition object and frees all associated resources.

Parameters

* vsip_dlu_fp* lu: Pointer to the LU decomposition object to be destroyed.

Return Value
¢ Returns O on success.

¢ Returns a non-zero value on error.

Example

vsip_lu_f *lu_obj;
int result;

// Assuming lu_obj has been properly initialized
result = vsip_lud_destroy_f(lu_obj);

if (result '= 0) {
// Handle error
}

Version 1.5, January 2026 - Release Version 240
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.3. GENERAL LINEAR SQUARE SYSTEM SOLVER

6.3.3 vsip_dlud_getattr_p - Get LU Decomposition Attributes

typedef struct _vsip_lu_attr_g {
vsip_length n;
} vsip_lu_attr_g;

typedef vsip_lu_attr_g vsip_lu_attr_f;
typedef vsip_lu_attr_g vsip_clu_attr_f;

void vsip_lud_getattr_f(const vsip_lu_f *1lu, vsip_lu_attr_f *attr);
void vsip_clud_getattr_f(const vsip_clu_f *lu, vsip_lu_cattr_f *attr);
Description

This function retrieves the attributes of an LU decomposition object, this currently includes a single attribute called n
for the row and column element count of the square matrix.

Parameters

* const vsip_dlu_p* lu: Pointer to the LU decomposition object.

¢ vsip_lu_dattr_p* attr: Pointer to a structure where the attributes will be stored.

Example

vsip_lu_f *lu_obj;
vsip_lu_attr_f attr;

// Assuming lu_obj has been properly inttialized
vsip_lud_getattr_f(lu_obj, &attr);

// attr.n - Number of rows and columns of the square matriz

Version 1.5, January 2026 - Release Version 241
Copyright © Adelsbach

6.3. GENERAL LINEAR SQUARE SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.3.4 vsip_dlud_p - Perform LU Decomposition

int vsip_lud_f(const vsip_lu_f* lud, const vsip_mview_f* A);
int vsip_clud_f(const vsip_clu_f* lud, const vsip_cmview_f* A);

Description

This function performs LU decomposition of matrix A using the pre-allocated LU decomposition object [ud. The decom-

position computes:
A=PLU

where:
¢ P is a permutation matrix
¢ L is a unit lower triangular matrix
¢ U is an upper triangular matrix

The function uses partial pivoting for numerical stability. The decomposed factors are stored within the LU decom-
position object and can be used for subsequent operations like solving linear systems.

Parameters

* const vsip_dlu_p* lud: Pointer to the LU decomposition object created by vsip_lud_create_p.

* const vsip_dmview_p* A:Pointer to the n x n matrix view to be decomposed.

Return Value

* Returns 0 on success.

* Returns a non-zero value on error (e.g., if the matrix is singular or dimensions don’t match the LU object).

Example

vsip_lu_f *lu_obj;
vsip_mview_f *matrix_A;
int result;

// Assuming lu_obj and matriz_A have been properly initialized
// with matching dimenstions
result = vsip_lud_f(lu_obj, matrix_A);

if (result !'= 0) {
// Handle error (e.g., singular matriz)

3

Notes

* The input matrix A must have full rank.
* The input matrix A must have the same dimensions as specified when creating the LU decomposition object.
* The contents of matrix A may be overwritten and must not be modified as long as factorization is required.

* The decomposed factors L and U are stored within the LU decomposition object and can be accessed through other
VSIPL functions.

Version 1.5, January 2026 - Release Version 242
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.3. GENERAL LINEAR SQUARE SYSTEM SOLVER

6.3.5 vsip_dlusol_p - Solve Linear System Using LU Decomposition

int vsip_lusol_f(const vsip_lu_f* lud, const vsip_vview_f* b, const vsip_vview_f* x);

int vsip_clusol_f(const vsip_clu_f* lud, const vsip_cvview_f* b, const vsip_cvview_f* x);
Description

This function solves a system a linear square system int the forms of:

AX=B
ATX=B
APX-B

Where the matrix A has previously been decomposed using the function vsip_dlud_p. Whether the matrix A is
transposed depends on the given argument provided.
Parameters
* const vsip_dlu_f* lud: Pointer to the LU decomposition object containing the decomposed factors of matrix A.
* vsip_mat_op OpA: Operand for the input matrix A.

— VSIP_MAT_NTRANS - Do not transpose.
— VSIP_MAT_TRANS - Transpose.
— VSIP_MAT_HERM - Hermitian (Complex only).

* const vsip_dmview_f* xb: Pointer to the right-hand side matrix B of order n by k. On exit result matrix X.

Return Value
* Returns 0 on success.

¢ Returns a non-zero value on error (e.g., if dimensions are incompatible or the matrix is singular).

Example

vsip_lu_f *lu_obj;
vsip_mview_f *a, *xb;

// Assuming all objects have been properly initialized
// First perform LU decomposition
result = vsip_lud_f(lu_obj, a);
if (result != 0) {
// Handle decomposition error

3

// Then solve the linear system
result = vsip_lusol_f(lu_obj, VSIP_MAT_NTRANS, xb);
if (result != 0) {

// Handle solve error

}

Notes

¢ The LU decomposition object must have been previously created and used to decompose a matrix.

Version 1.5, January 2026 - Release Version 243
Copyright © Adelsbach

6.4. SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM SOLVERHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.4 Symmetric Positive Definite Linear System Solver

Version 1.5, January 2026 - Release Version 244
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS.4. SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM SOLVER

6.4.1 vsip_dchold_create_p - Create Cholesky Decomposition Object

typedef enum _vsip_mat_uplo {
VSIP_TR_LOW = 0, // Lower triangular
VSIP_TR_UPP = 1 // Upper triangular
} vsip_mat_uplo;

vsip_chol_f* vsip_chold_create_f(vsip_mat_uplo uplo, vsip_length n);
vsip_cchol_f* vsip_cchold_create_f(vsip_mat_uplo uplo, vsip_length n);
Description

This function creates a Cholesky decomposition object for a symmetric positive definite matrix of size n xn. The Cholesky
decomposition expresses a matrix A as the product of a lower triangular matrix L and its transpose: A = LLT (when
uplo = VSIP_MAT_LOWER) or A = UTU (when uplo = VSIP_MAT_UPPER).

Parameters

* vsip_mat_uplo uplo: Specifies whether to store the upper (VSIP_MAT_UPP) or lower (VSIP_MAT_LOW) triangle of
the matrix.

¢ vsip_length n: The dimension of the square matrix (n x n).

Return Value

* On success: Pointer to the newly created Cholesky decomposition object

® On error (e.g., memory allocation failure): NULL

Example
vsip_chol_f *chold;
vsip_length n = 100;

// Create Cholesky decomposition object for lower triangle

chold = vsip_chold_create_f (VSIP_MAT_LOW, n);

if (chold == NULL) {
fprintf (stderr, "Error: Could not create Cholesky object\n");
return -1;

Notes
* The matrix must be symmetric and positive definite, otherwise the decomposition will fail.

¢ The object should be freed with vsip_d chold_destroy_p when no longer needed.

Version 1.5, January 2026 - Release Version 245
Copyright © Adelsbach

6.4. SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM SOLVERHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.4.2 vsip_dchold_destroy_p - Destroy Cholesky Decomposition Object
int vsip_chold_destroy_f (vsip_chol_f #*chold);

int vsip_cchold_destroy_f(vsip_cchol_f #*chold);

Description

This function releases the memory allocated for a Cholesky decomposition object.

Parameters

* vsip_dchol_p* chold: Pointer to the Cholesky decomposition object to be destroyed.

Return Value

¢ Returns 0

Version 1.5, January 2026 - Release Version 246
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS.4. SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM SOLVER

6.4.3 vsip_dchold_getattr_p - Get Cholesky Decomposition Attributes

typedef struct _vsip_chol_attr_f {
vsip_length n;
vsip_mat_uplo uplo;

} vsip_chol_attr_f;

typedef vsip_chol_attr_f vsip_cchol_attr_f;

void vsip_chold_getattr_f(const vsip_chol_f *chold, vsip_chol_attr_f *attr);
void vsip_cchold_getattr_f (const vsip_cchol_f *chold, vsip_cchol_attr_f *attr);
Description

This function retrieves the attributes of a Cholesky decomposition object and stores them in the provided structure.

Parameters
* const vsip_dchol_p* chold: Pointer to the Cholesky decomposition object.

* vsip_dchol_attr_p* attr: Pointer to the structure where attributes will be stored.

Example

vsip_chol_f *chold;
vsip_chol_attr_f attr;

// Create object
chold = vsip_chold_create_f(VSIP_MAT_LOW, 100);

// Get attributes
vsip_chold_getattr_f(chold, &attr);

printf ("Cholesky decomposition attributes:\n");
printf(" Matrix size: %lu x %lu\n", attr.n, attr.n);
printf (" Stored triangle: %s\n",

attr.uplo == VSIP_MAT_LOW ? "lower" : "upper");

// Destroy object
vsip_chold_destroy_f (chold);

Version 1.5, January 2026 - Release Version 247
Copyright © Adelsbach

6.4. SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM SOLVERHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.4.4 vsip_dchold_p - Perform Cholesky Decomposition
int vsip_chold_f(vsip_chol_f *chold, const vsip_mview_f *a);
int vsip_cchold_f (vsip_cchol_f *chold, const vsip_cmview_f *a);
Description

This function performs the Cholesky decomposition of a symmetric positive definite matrix A using the provided Cholesky
decomposition object. The decomposition expresses A as the product of a triangular matrix and its transpose:
When uplo = VSIP_MAT_LOW:

A=LLT

A=LL"
When uplo = VSIP_MAT_UPP:

A=UTU

A=U"U

Where L is a lower triangular matrix and U is an upper triangular matrix.

Parameters

* vsip_dchol_p* chold: Pointer to the Cholesky decomposition object created with vsip_dchold_create_p.

* const vsip_dmview_p* a: Pointer to the input matrix to be decomposed. The matrix must be symmetric positive
definite and have dimensions matching those specified when the Cholesky object was created.

Return Value

* Returns 0 on success.

¢ Returns a non-zero value on error (e.g., if the matrix is not positive definite or dimensions don’t match).

Notes

¢ The input matrix A must be symmetric and positive definite. The function will fail if the matrix is not positive
definite.

¢ The matrix dimensions must match those specified when the Cholesky object was created.
* The decomposition overwrites the contents of the Cholesky object with the new decomposition.

¢ The Cholesky object can be reused for multiple decompositions by calling this function multiple times with differ-
ent input matrices (as long as they have the same dimensions).

Version 1.5, January 2026 - Release Version 248
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS.4. SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM SOLVER

6.4.5 vsip_dcholsol_p - Solve Linear Systems Using Cholesky Decomposition
int vsip_cholsol_f(const vsip_chol_f *chold, const vsip_mview_f *a);

int vsip_ccholsol_f(const vsip_cchol_f #*chold, const vsip_cmview_f *a);

Description

This function solves linear systems of equations using a previously computed Cholesky decomposition. It solves the
system AX = B where A is a symmetric positive definite matrix that has been decomposed using vsip_dchold_p.

The function uses the Cholesky decomposition A = LLT (or A = UTU, A = UHU) to efficiently solve the linear system
by performing forward and backward substitution on the triangular factors.

Parameters

* const vsip_dchol_p* chold: Pointer to the Cholesky decomposition object containing a previously computed
decomposition.

* const vsip_dmview_p* a: On input, contains the right-hand side matrix B. On output, contains the solution
matrix X. The matrix should have dimensions n x 2 where A is n x n and k is the number of right-hand sides.
Return Value

¢ Returns 0 on success.

¢ Returns a non-zero value on error

Notes

¢ The Cholesky decomposition must have been previously computed using vsip_dchold_p.

Version 1.5, January 2026 - Release Version 249
Copyright © Adelsbach

6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.5 Over-determined Linear System Solver

Version 1.5, January 2026 - Release Version 250
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER

6.5.1 vsip_dqrd_create_p - Create QR Decomposition Object

typedef enum _vsip_qrd_qopt {
VSIP_QRD_NOSAVEQ = 0, // Do not save {
VSIP_QRD_SAVEQ = 1, // Save full §
VSIP_QRD_SAVEQ1 2 // Save skinny §
} vsip_qrd_qopt;

vsip_qr_f* vsip_qrd_create_f (vsip_length m, vsip_length n, vsip_qrd_qopt qopt);
vsip_cqr_f* vsip_cqrd_create_f(vsip_length m, vsip_length n, vsip_qrd_qopt qopt);
Description

This function creates a QR decomposition object that can be used to compute the QR factorization of an m x n matrix.
The QR decomposition expresses a matrix A as the product of an orthogonal matrix @ and an upper triangular matrix
R, such that A =QR.

The vsip_qrd_qopt parameter allows you to specify how the orthogonal matrix @ should be stored.

Parameters
* vsip_length m: Number of rows in the matrix to be decomposed.
* vsip_length n: Number of columns in the matrix to be decomposed.
* vsip_qrd_qopt qopt: Option specifying how the € matrix should be saved:

— VSIP_QRD_NOSAVEQ: Don’t save @ (only compute R)
— VSIP_QRD_SAVEQ1: Save essential parts of @ (more memory efficient)
— VSIP_QRD_SAVEQ: Save full @ matrix

Return Value

¢ On success, returns a pointer to the newly created QR decomposition object.

® On error (e.g., if memory allocation fails), returns NULL.

Example

vsip_qr_f *qrd;
vsip_length m = 100, n = 50;

// Create a (R decomposition object
// Using SAVEQ2 as a good compromise between memory and functionality
qrd = vsip_qrd_create_f(m, n, VSIP_QRD_SAVEQ2);

if (qrd == NULL) {
fprintf (stderr, "Failed to create QR decomposition object\n");
return;

Notes

¢ The QR decomposition object must be destroyed with vsip_dqrd_destroy_p when no longer needed.
* The choice of qopt affects both memory usage and the operations that can be performed with the decomposition:

— VSIP_QRD_SAVEQ allows full access to @ but uses more memory
— VSIP_QRD_SAVEQ1 is a good compromise for most applications
— VSIP_QRD_NOSAVEQ is most memory efficient but only allows operations with R

¢ For square matrices (m = n), the QR decomposition can be used to compute determinants and inverses.

Version 1.5, January 2026 - Release Version 251
Copyright © Adelsbach

6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

* For tall matrices (m > n), the decomposition is useful for least squares problems.
* This function allocates internal storage for the decomposition, which is freed when the QR object is destroyed.

* For repeated decompositions of matrices with the same dimensions, you can reuse the QR object by calling
vsip_dqrd_p multiple times with the same object.

Version 1.5, January 2026 - Release Version 252
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER

6.5.2 vsip_dqrd_destroy_p - Destroy QR Decomposition Object
int vsip_qrd_destroy_f(vsip_qr_f *qrd);

int vsip_cqrd_destroy_f(vsip_cqr_f *qrd);

Description

This function releases the memory allocated for a QR decomposition object and destroys it.

Parameters
* vsip_dqr_p* qrd: Pointer to the QR decomposition object to be destroyed, which was previously created with
vsip_dqrd_create_p.
Return Value

¢ Returns 0.

Example

vsip_qr_f *qrd;
vsip_mview_f *A;
vsip_length m = 100, n = 50;

// Create QR decomposition object

qrd = vsip_qrd_create_f(m, n, VSIP_QRD_SAVEQ);

if (qrd == NULL) {
fprintf (stderr, "Error: Could not create QR object\n");
return -1;

status = vsip_qrd_destroy_f(qrd);

Version 1.5, January 2026 - Release Version 253
Copyright © Adelsbach

6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.5.3 vsip_dqrd_getattr_p - Get QR Decomposition Attributes

typedef struct _vsip_qr_attr_f {
vsip_length n;
vsip_length m;
vsip_qrd_qopt Qopt;

} vsip_qgr_attr_f;

typedef vsip_qr_attr_f vsip_cqr_attr_f;

void vsip_qrd_getattr_f (const vsip_qr_f *qrd, vsip_qr_attr_f *attr);
void vsip_cqrd_getattr_f (const vsip_cqr_f *qrd, vsip_cqr_attr_f *attr);

Description

This function retrieves the attributes of a QR decomposition object and stores them in a vsip_dqr_attr_p structure.
The attributes provide complete information about the QR decomposition, including the dimensions of the original
matrix and the options used during creation.

Parameters

* const vsip_dqr_p* qrd: Pointer to the QR decomposition object.

e vsip_dqr_attr_p* attr: Pointer to the attribute structure where the QR decomposition attributes will be
stored.

Example

vsip_qr_f *qrd;
vsip_qr_attr_f attr;
vsip_length m = 100, n = 50;

// Create a (R decomposition object
qrd = vsip_qrd_create_f(m, n, VSIP_QRD_SAVEQR);
if (qrd == NULL) {
// Handle error
}

// Get the attributes of the QR decomposition object
vsip_qrd_getattr_f(qrd, &attr);

printf ("QR decomposition attributes:\n");
printf(" Matrix dimensions: %lu x %lu\n", attr.m, attr.n);

printf(" QR option: %d\n", attr.qopt);

vsip_qrd_destroy_f(qrd);

Version 1.5, January 2026 - Release Version 254
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER

6.5.4 vsip_dqrd_p - Perform QR Decomposition

int vsip_qrd_f(vsip_qr_f *qrd, const vsip_mview_f *a);
int vsip_cqrd_f(vsip_cqr_f *qrd, const vsip_cmview_f *a);
Description

This function performs the QR decomposition of matrix A using the provided QR decomposition object. The QR decom-
position expresses matrix A as the product of an orthogonal matrix @ and an upper triangular matrix R, such that
A=QR.

Parameters

e vsip_dqr_p* qrd: Pointer to the QR decomposition object created with vsip_dqrd_create_p.
* const vsip_dmview_p* a: Pointer to the input matrix to be decomposed. The matrix must have dimensions

matching those specified when the QR object was created. May be overwritten by the decomposition.

Return Value
* Returns 0 on success.

* Returns a non-zero value on error (e.g., if the matrix dimensions don’t match the QR object).

Notes

¢ The input matrix A must have dimensions m x n that match those specified when the QR object was created.
¢ The decomposition overwrites the contents of the QR object with the new decomposition.

* The QR object can be reused for multiple decompositions by calling this function multiple times with different
input matrices (as long as they have the same dimensions).

Version 1.5, January 2026 - Release Version 255
Copyright © Adelsbach

6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.5.5 vsip_dqrsol_p - Solve Linear Systems Using QR Decomposition

typedef enum _vsip_qrd_prob {
VSIP_COV = 0, /* Solwe a covariance linear system problem */
VSIP_LLS = 1 /# Solve a linear least squares problem */

} vsip_qrd_prob;

int vsip_qrsol_f(const vsip_qr_f *qrd, vsip_qrd_prob prob, const vsip_mview_f #*xb);
int vsip_cqrsol_f(const vsip_cqr_f *qrd, vsip_qrd_prob prob, const vsip_cmview_f *xb);
Description

This function solves linear systems of equations using a previously computed QR decomposition for a matrix A with
m x n with rank n. It can solve a covariance linear system problem

ATAX =B
for real or
APAX =B
for complex. Or a linear least squares problem,
min |[AX —Bllo

Parameters

* const vsip_dqr_p* qrd: Pointer to the QR decomposition object containing a previously computed decomposi-
tion.

* vsip_qrd_prob prob: Type of problem to solve.
* const vsip_dmview_p* xb: Oninput, contains the right-hand side matrix B of size n xk for a covariance problem

and m x k for a least squares problem. On output, contains the solution X.

Return Value

* Returns 0 on success.

¢ Returns a non-zero value on error

Notes

* The QR decomposition must have been previously computed using vsip_dqrd_p.

¢ The QR object must have been created with an option that saves the @ matrix to use this function.

Version 1.5, January 2026 - Release Version 256
Copyright © Adelsbach

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER

6.5.6 vsip_dqrdsolr_p - Solve Linear Systems with Modified R Matrix

typedef enum _vsip_mat_side {
VSIP_MAT_LSIDE = O,
VSIP_MAT_RSIDE = 1

} vsip_mat_side;

int vsip_qrdsolr_f(const vsip_qr_f *qrd, vsip_mat_op OpR, vsip_scalar_f alpha, const vsip_mview_f *xb);
int vsip_cqrdsolr_f(const vsip_cqr_f *qrd, vsip_mat_op OpR, vsip_cscalar_f alpha, const vsip_cmview_f *xb)
Description

This function solves linear systems using a QR decomposition where the R matrix has been modified by a specified
operation. It provides more flexibility than vsip_dqrsol_p by allowing operations on the R matrix before solving the
system.
The function solves systems of the form:
op(R)X =aB

where op(R) can be R, RT, or R¥ (conjugate transpose, though for real matrices this is equivalent to RT).

Parameters

* const vsip_dqr_p* qrd: Pointer to the QR decomposition object containing a previously computed decomposi-
tion.

* vsip_mat_op OpR: Operation to perform on R:

— VSIP_MAT_NTRANS: Use R as is
— VSIP_MAT_TRANS: Use the transpose of R, RT
— VSIP_MAT_HERM: Use the conjugate transpose of R, RY

* vsip_dscalar_p alpha: Scalar multiplier for the right-hand side.

* const vsip_dmview_p* xb: On input, contains the right-hand side B. On output, contains the solution X.

Return Value

* Returns 0 on success.

e Returns a non-zero value on error.

Notes

¢ The QR decomposition must have been previously computed using vsip_dqrd_p.
* The input matrix B must have appropriate dimensions for the operation:

— For VSIP_MAT_NTRANS: B should be n x £k where Aism xn
— For VSIP_MAT_TRANS or VSIP_MAT_HERM: B should be m x &k where A ism xn

¢ The input matrix X B is overwritten with the solution.
* The scalar a allows scaling of the right-hand side without modifying the input matrix.

¢ This function is more flexible than vsip_dqrsol_p but requires more understanding of the underlying linear
algebra.

* The QR object must have been created with an option that saves the @ matrix to use this function.

Version 1.5, January 2026 - Release Version 257
Copyright © Adelsbach

6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS

6.5.7 vsip_dqrdprodq_p - Multiply by Q Matrix from QR Decomposition

typedef enum _vsip_mat_op

VSIP_MAT_NTRANS = 0, //
VSIP_MAT_TRANS =1, //
VSIP_MAT_HERM = 2, //

VSIP_MAT_CONJ =3 //
} vsip_mat_op;

{

op (4)
op(4)
op(4)

nonon
ESES NN

typedef enum _vsip_mat_side {

VSIP_MAT_LSIDE = O,
VSIP_MAT_RSIDE = 1
} vsip_mat_side;

“T

“H (complexz only)
op(X) = 4~* (complex only)

int vsip_qrdprodq_f(const vsip_qr_f *qrd, vsip_mat_op opQ, vsip_mat_side ap(, const vsip_mview_f *c);
int vsip_cqrdprodq_f (const vsip_cqr_f *qrd, vsip_mat_op opQ, vsip_mat_side apQ, const vsip_cmview_f *c);

Description

This function performs matrix multiplication with the orthogonal matrix @ from a QR decomposition. It computes either
QC,QTC,Qfc, €Q,cQT or CQH, depending on the specified parameters.
The operation performed is determined by the opQ and apQ parameters:

* opQ specifies whether to use @, QT or @

* ap(Q specifies whether @ is on the left or right of the multiplication

Parameters

* const vsip_dqr_p* qrd: Pointer to the QR decomposition object containing a previously computed decomposi-

tion.

* vsip_mat_op opQ: Operation to perform with Q:

— VSIP_MAT_NTRANS: Use as is
— VSIP_MAT_TRANS: Use the transpose of @, QT
- VSIP_MAT_HERM: Use the conjugate transpose of @, @

* vsip_mat_side apQ: Side of multiplication:

- VSIP_MAT_LEFT: Q is on the left (QC, QT C or QT C)
— VSIP_MAT_RIGHT: @ is on the right (CQ, CQT or CQ™)

* const vsip_dmview_p* c: On input, contains matrix C. On output, contains the result of the multiplication.

Return Value

¢ Returns 0 on success.

¢ Returns a non-zero value on error.

Notes

¢ The QR decomposition must have been previously computed using vsip_dqrd_p.

* The QR object must have been created with an option that saves the @ matrix (VSIP_QRD_SAVEQ or VSIP_QRD_SAVEQ1).

¢ The input matrix C must have appropriate dimensions for the operation.

For VSIP_QRD_SAVEQ1:

Input Output
MAT_LSIDE | MAT_RSIDE | MAT_LSIDE | MAT_RSIDE
MAT_NTRANS | nxs rxm mxs rxn
MAT_TRANS | m xs rxn nxs rxm
MAT_HERM | m xs rxn nxs rxm

Version 1.5, January 2026 - Release Version

Copyright © Adelsbach

258

CHAPTER 6. LINEAR ALGEBRA FUNCTIONS 6.5. OVER-DETERMINED LINEAR SYSTEM SOLVER

Input and Output
MAT_LSIDE | MAT_RSIDE
For VSIP_QRD_SAVEQ:| MAT_NTRANS | m x s rxm
MAT_TRANS | m xs rxm
MAT_HERM | m xs rxm
Version 1.5, January 2026 - Release Version 259

Copyright © Adelsbach

	About this Guide
	Legal Information
	Feedback and Contact

	Overview
	Introduction
	Link Libraries

	General Functions
	vsip_cstorage_p - Complex storage type

	Support Functions
	Initialization Functions
	vsip_init - Initialize
	vsip_finalize - Finalize

	Block Support Functions
	vsip_dblockcreate_p - Create a block
	vsip_blockbind_p - Create a block using existing data
	vsip_cblockbind_p - Create a block using existing data (complex)
	vsip_blockrebind_p - Rebind existing block
	vsip_cblockrebind_p - Rebind existing block (complex)
	vsip_dblockadmit_p - Admit block data
	vsip_blockfind_p - Get user data
	vsip_cblockfind_p - Get user data (complex)
	vsip_blockrelease_p - Release a block
	vsip_cblockrelease_p - Release a block (complex)
	vsip_dblockdestroy_p - Destroy a block

	Vector View Support Functions
	vsip_dvcreate_p - Create a Vector View
	vsip_dvbind_p - Bind a Vector View to a Data Block
	vsip_dvcloneview_p - Clone a Vector View
	vsip_dvget_p - Get an Element from a Vector View
	vsip_dvput_p - Set an Element in a Vector View
	vsip_dvsubview_p - Create a Subview of a Vector View
	vsip_vrealview_p - Get the Real Part View of a Complex Vector View
	vsip_vimagview_p - Get the Imaginary Part View of a Complex Vector View
	vsip_dvgetattrib_p - Get the Attributes of a Vector View
	vsip_dvputattrib_p - Set the Attributes of a Vector View
	vsip_dvgetblock_p - Get the Data Block of a Vector View
	vsip_dvgetlength_p - Get the Length of a Vector View
	vsip_dvputlength_p - Set the Length of a Vector View
	vsip_dvgetstride_p - Get the Stride of a Vector View
	vsip_dvputstride_p - Set the Stride of a Vector View
	vsip_dvgetoffset_p - Get the Offset of a Vector View
	vsip_dvputoffset_p - Set the Offset of a Vector View
	vsip_dvdestroy_p - Destroy a Vector View
	vsip_dvalldestroy_p - Destroy a Vector View and Its Data Block

	Matrix View Support Functions
	vsip_dmcreate_p - Create a Matrix View
	vsip_dmbind_p - Bind a Matrix View to a Block
	vsip_dmcloneview_p - Clone a Matrix View
	vsip_dmget_p - Get Matrix Element
	vsip_dmput_p - Set Matrix Element
	vsip_dmsubview_p - Create a Submatrix View
	vsip_dmtransview_p - Create a Transposed Matrix View
	vsip_dmrowview_p - Create a Row Vector View of a Matrix
	vsip_dmcolview_p - Create a Column Vector View of a Matrix
	vsip_dmdiagview_p - Create a Diagonal Vector View of a Matrix
	vsip_mrealview_p - Create a Real Part Matrix View
	vsip_mimagview_p - Create an Imaginary Part Matrix View
	vsip_dmgetattrib_p - Get Matrix Attributes
	vsip_dmputattrib_p - Set Matrix Attributes
	vsip_dmgetblock_p - Get the Data Block from a Matrix View
	vsip_dmgetcollength_p - Get Number of Columns in a Matrix View
	vsip_dmputcollength_p - Set Number of Columns in a Matrix View
	vsip_dmgetrowlength_p - Get Number of Rows in a Matrix View
	vsip_dmputrowlength_p - Set Number of Rows in a Matrix View
	vsip_dmgetcolstride_p - Get Column Stride of a Matrix View
	vsip_dmputcolstride_p - Set Column Stride of a Matrix View
	vsip_dmgetrowstride_p - Get Row Stride of a Matrix View
	vsip_dmputrowstride_p - Set Row Stride of a Matrix View
	vsip_dmgetoffset_p - Get Matrix View Offset
	vsip_dmputoffset_p - Set Matrix View Offset
	vsip_dmdestroy_p - Destroy a Matrix View
	vsip_dmalldestroy_p - Destroy Matrix View and its Data Block

	Scalar Functions
	Real Scalar Functions
	Complex Scalar Functions
	vsip_real_p - Complex Real part
	vsip_imag_p - Complex Imaginary part
	vsip_cmplx_p - Create complex number
	vsip_CMPLX_p - Create a Complex Scalar and Store in a Pointer

	Index Scalar Functions

	Random Number Generation
	Random Number Functions
	vsip_randcreate - Create a Random Number Generator State
	vsip_randdestroy - Destroy a Random Number Generator State
	vsip_dvrandu_p - Generate Uniformly Distributed Random Numbers in a Vector View
	vsip_dvrandn_p - Fill Vector with Normally Distributed Random Numbers

	Vector and Elementwise Operations
	Copy Functions
	vsip_dvcopy_p_p - Copy Vector Views
	vsip_dmcopy_p - Copy Matrix Views

	Vector General
	vsip_dvmul_p - Element-wise Multiplication of Two Vector Views
	vsip_vdiv_p - Element-wise Division of Two Vector Views
	vsip_dvadd_p - Element-wise Addition of Two Vector Views
	vsip_dvsub_p - Element-wise Subtraction of Two Vector Views
	vsip_dsvmul_p - Multiply a Scalar by a Vector View
	vsip_svdiv_p - Divide a Scalar by a Vector View
	vsip_svadd_p - Add a Scalar to a Vector View
	vsip_dvneg_p - Negate Elements of a Vector View
	vsip_dvmag_p - Compute Magnitude of Elements of a Vector View

	Vector Real
	vsip_vminval_p - Find the Minimum Value in a Vector View
	vsip_vmaxval_p - Find the Maximum Value in a Vector View
	vsip_vsumval_p - Compute the Sum of Elements in a Vector View
	vsip_vsumsqval_p - Compute the Sum of Squares of Elements in a Vector View
	vsip_vsq_p - Square Elements of a Vector View
	vsip_vrecip_p - Compute Reciprocal of Elements of a Vector View
	vsip_vmin_p - Element-wise Minimum of Two Vector Views
	vsip_vmax_p - Element-wise Maximum of Two Vector Views
	vsip_vsin_p - Element-wise Sine of a Vector View
	vsip_vcos_p - Element-wise Cosine of a Vector View
	vsip_vtan_p - Element-wise Tangent of a Vector View
	vsip_vatan_p - Element-wise Arctangent of a Vector View
	vsip_vexp_p - Element-wise Exponential of a Vector View
	vsip_vlog_p - Element-wise Natural Logarithm of a Vector View
	vsip_vlog10_p - Element-wise Base-10 Logarithm of a Vector View
	vsip_vsqrt_p - Element-wise Square Root of a Vector View
	vsip_vatan2_p - Element-wise Arctangent of Two Vector Views
	vsip_vfill_p - Fill a Vector View with a Scalar Value
	vsip_vramp_p - Fill a Vector View with a Ramp

	Vector Complex
	vsip_cvjmul_p - Element-wise Complex Conjugate Multiplication of Two Complex Vector Views
	vsip_rcvmul_p - Element-wise Real-Complex Multiplication
	vsip_rscvmul_p - Element-wise Scalar-Complex Multiplication
	vsip_cvconj_p - Element-wise Complex Conjugate of a Complex Vector View
	vsip_cvmag_p - Compute Magnitude of Complex Vector View
	vsip_vcmagsq_p - Element-wise Magnitude Squared of a Complex Vector View

	Boolean
	vsip_vnot_p - Boolean Vector Logical NOT
	vsip_vand_p - Boolean Vector Logical AND
	vsip_vor_p - Boolean Vector Logical OR
	vsip_vxor_p - Boolean Vector Logical XOR
	vsip_valltrue_p - Check if All Elements in Boolean Vector are True
	vsip_vanytrue_p - Check if Any Element in Boolean Vector is True
	vsip_vindexbool - Find Indices of True Elements in Boolean Vector

	Manipulation Operations
	vsip_vreal_p - Extract Real Part of a Complex Vector View
	vsip_vimag_p - Extract Imaginary Part of a Complex Vector View
	vsip_vcmplx_p - Create a Complex Vector View from Real and Imaginary Parts
	vsip_dvgather_p - Gather Elements from a Vector
	vsip_dvscatter_p - Scatter Elements to a Vector
	vsip_dvswap_p - Swap Elements Between two Vectors
	vsip_vrect_p - Convert Cartesian Coordinates to Complex Numbers
	vsip_vpolar_p - Convert Polar Coordinates to Cartesian

	Signal Processing Functions
	FFT Functions
	vsip_ddfftop_create_p - Create FFT Objects (Out-of-Place)
	vsip_ccfftip_create_p - Create FFT Object (In-Place)
	vsip_fft_destroy_p - Destroy an FFT Object
	vsip_fft_getattr_p - Get FFT Object Attributes
	vsip_ddfftop_p - Perform FFT Operations (Out-of-Place)
	vsip_ccfftip_p - Perform FFT Operations (In-Place)
	vsip_ddffmop_create_p - Create Multiple-FFT Objects (Out-of-Place)
	vsip_ccffmip_create_p - Create Multilpe-FFT Object (In-Place)
	vsip_fftm_destroy_p - Destroy a Multiple-FFT Object
	vsip_fftm_getattr_p - Get Multple-FFT Object Attributes
	vsip_ddffmop_p - Perform Multiple-FFT Operations (Out-of-Place)
	vsip_ccffmip_p - Perform Multiple-FFT Operations (In-Place)

	Convolution and Correlation Functions
	vsip_dconv1d_create_p - Create 1D Convolution Object
	vsip_dconv1d_destroy_p - Destroy 1D Convolution Object
	vsip_dconv1d_getattr_p - Get 1D Convolution Object Attributes
	vsip_dconvolve1d_p - Perform 1D Convolution
	vsip_dcorr1d_create_p - Create 1D Correlation Object
	vsip_dcorr1d_destroy_p - Destroy 1D Correlation Object
	vsip_dcorr1d_getattr_p - Get 1D Correlation Object Attributes
	vsip_dcorrelate1d_p - Compute 1D Correlation

	Window Functions
	vsip_vcreate_blackman_p - Create a Blackman Window Vector
	vsip_vcreate_kaiser_p - Create a Kaiser Window Vector
	vsip_vcreate_cheby_p - Create a Chebyshev Window Vector
	vsip_vcreate_hanning_p - Create a Hanning Window Vector

	FIR
	vsip_dfir_create_p - Create a FIR Filter
	vsip_dfir_reset_p - Reset a FIR Filter
	vsip_dfir_getattr_p - Get Attributes of a FIR Filter
	vsip_dfirflt_p - Apply a FIR Filter to a Vector View
	vsip_dfir_destroy_p - Destroy a FIR Filter

	Miscellaneous Signal Processing Functions
	vsip_vhisto_p - Compute Histogram of a Vector View

	Linear Algebra Functions
	Matrix and Vector Operations
	vsip_dvdot_p - Compute the Dot Product of Two Vector Views
	vsip_cvjdot_p - Compute the Conjugate Dot Product of Two Complex Vector Views
	vsip_dvouter_p - Outer Product of Two Vectors
	vsip_dmtrans_p - Matrix Transposition
	vsip_cmherm_p - Matrix Hermitian
	vsip_dgemp_p - General Matrix Product
	vsip_dgems_p - General Matrix Scaling and Addition
	vsip_dvmprod_p - Vector-Matrix Product
	vsip_dmvprod_p - Matrix-Vector Product
	vsip_dmprod_p - Matrix-Matrix Product
	vsip_dmprodt_p - Matrix-Matrix Product with Transposition
	vsip_cmprodh_p - Complex Matrix Product with Hermitian Transpose
	vsip_cmprodj_p - Complex Matrix Product with Conjugate

	Special Linear Solvers
	vsip_dtoepsol_p - Solve a Toeplitz System of Equations
	vsip_dcovsol_p - Solve a Covariance System of Equations
	vsip_dllsqsol_p - Solve Linear Least Squares Problem

	General Linear Square System Solver
	vsip_dlud_create_p - Create LU Decomposition Object
	vsip_dlud_destroy_p - Destroy LU Decomposition Object
	vsip_dlud_getattr_p - Get LU Decomposition Attributes
	vsip_dlud_p - Perform LU Decomposition
	vsip_dlusol_p - Solve Linear System Using LU Decomposition

	Symmetric Positive Definite Linear System Solver
	vsip_dchold_create_p - Create Cholesky Decomposition Object
	vsip_dchold_destroy_p - Destroy Cholesky Decomposition Object
	vsip_dchold_getattr_p - Get Cholesky Decomposition Attributes
	vsip_dchold_p - Perform Cholesky Decomposition
	vsip_dcholsol_p - Solve Linear Systems Using Cholesky Decomposition

	Over-determined Linear System Solver
	vsip_dqrd_create_p - Create QR Decomposition Object
	vsip_dqrd_destroy_p - Destroy QR Decomposition Object
	vsip_dqrd_getattr_p - Get QR Decomposition Attributes
	vsip_dqrd_p - Perform QR Decomposition
	vsip_dqrsol_p - Solve Linear Systems Using QR Decomposition
	vsip_dqrdsolr_p - Solve Linear Systems with Modified R Matrix
	vsip_dqrdprodq_p - Multiply by Q Matrix from QR Decomposition

