Stable Numerics Subroutine Library
Programming Reference Manual
Version 1.1 DD-00006-011

6.4.2 Set Assertions RC

bool disjoint(const rc_interval<T>& a, const rc_interval<T>& b); 
bool proper_subset(const rc_interval<T>& a, const rc_interval<T>& b); 
bool subset(const rc_interval<T>& a, const rc_interval<T>& b); 
bool proper_superset(const rc_interval<T>& a, const rc_interval<T>& b); 
bool superset(const rc_interval<T>& a, const rc_interval<T>& b); 
bool overlap(const rc_interval<T>& a, const rc_interval<T>& b); 
 
bool inside(const rc_interval<T>& a, const std::complex<T>& v);

These functions assert set properties between two given rectangular intervals A,B∈ RC  .

disjoint(const rc_interval<T>& a, const rc_interval<T>& b)


Whether the two intervals are disjoint to each other.

proper_subset(const rc_interval<T>& a, const rc_interval<T>& b);


Determines whether A is a proper subset of B , that is A ⊂ B .

subset(const rc_interval<T>& a, const rc_interval<T>& b);


Determines whether A is a subset of B , that is A ⊆ B .

proper_superset(const rc_interval<T>& a, const rc_interval<T>& b);


Determines whether A is a proper superset of B , that is A ⊃B .

superset(const rc_interval<T>& a, const rc_interval<T>& b);


Determines whether A is a superset of B , that is A ⊇ B .

overlap(const rc_interval<T>& a, const rc_interval<T>& b);


Determines whether A intersects or overlaps with B .

inside(const rc_interval<T>& a, const std::complex<T>& v);


Whether the complex number v∈ C  is within the span of the given rectangular complex interval A .